aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/qtvector.cpp
blob: 4ec79b1e609ee7f0d8bffa7d3f9834ef73cf1e36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_WORK_AROUND_QT_BUG_CALLING_WRONG_OPERATOR_NEW_FIXED_IN_QT_4_5

#include "main.h"
#include <QtCore/QVector>
#include <Eigen/Geometry>
#include <Eigen/QtAlignedMalloc>

template<typename MatrixType>
void check_qtvector_matrix(const MatrixType& m)
{
  Index rows = m.rows();
  Index cols = m.cols();
  MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols);
  QVector<MatrixType> v(10, MatrixType(rows,cols)), w(20, y);
  for(int i = 0; i < 20; i++)
  {
    VERIFY_IS_APPROX(w[i], y);
  }
  v[5] = x;
  w[6] = v[5];
  VERIFY_IS_APPROX(w[6], v[5]);
  v = w;
  for(int i = 0; i < 20; i++)
  {
    VERIFY_IS_APPROX(w[i], v[i]);
  }

  v.resize(21);
  v[20] = x;
  VERIFY_IS_APPROX(v[20], x);
  v.fill(y,22);
  VERIFY_IS_APPROX(v[21], y);
  v.push_back(x);
  VERIFY_IS_APPROX(v[22], x);
  VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType));

  // do a lot of push_back such that the vector gets internally resized
  // (with memory reallocation)
  MatrixType* ref = &w[0];
  for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
    v.push_back(w[i%w.size()]);
  for(int i=23; i<v.size(); ++i)
  {
    VERIFY(v[i]==w[(i-23)%w.size()]);
  }
}

template<typename TransformType>
void check_qtvector_transform(const TransformType&)
{
  typedef typename TransformType::MatrixType MatrixType;
  TransformType x(MatrixType::Random()), y(MatrixType::Random());
  QVector<TransformType> v(10), w(20, y);
  v[5] = x;
  w[6] = v[5];
  VERIFY_IS_APPROX(w[6], v[5]);
  v = w;
  for(int i = 0; i < 20; i++)
  {
    VERIFY_IS_APPROX(w[i], v[i]);
  }

  v.resize(21);
  v[20] = x;
  VERIFY_IS_APPROX(v[20], x);
  v.fill(y,22);
  VERIFY_IS_APPROX(v[21], y);
  v.push_back(x);
  VERIFY_IS_APPROX(v[22], x);
  VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType));

  // do a lot of push_back such that the vector gets internally resized
  // (with memory reallocation)
  TransformType* ref = &w[0];
  for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
    v.push_back(w[i%w.size()]);
  for(unsigned int i=23; int(i)<v.size(); ++i)
  {
    VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix());
  }
}

template<typename QuaternionType>
void check_qtvector_quaternion(const QuaternionType&)
{
  typedef typename QuaternionType::Coefficients Coefficients;
  QuaternionType x(Coefficients::Random()), y(Coefficients::Random());
  QVector<QuaternionType> v(10), w(20, y);
  v[5] = x;
  w[6] = v[5];
  VERIFY_IS_APPROX(w[6], v[5]);
  v = w;
  for(int i = 0; i < 20; i++)
  {
    VERIFY_IS_APPROX(w[i], v[i]);
  }

  v.resize(21);
  v[20] = x;
  VERIFY_IS_APPROX(v[20], x);
  v.fill(y,22);
  VERIFY_IS_APPROX(v[21], y);
  v.push_back(x);
  VERIFY_IS_APPROX(v[22], x);
  VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType));

  // do a lot of push_back such that the vector gets internally resized
  // (with memory reallocation)
  QuaternionType* ref = &w[0];
  for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i)
    v.push_back(w[i%w.size()]);
  for(unsigned int i=23; int(i)<v.size(); ++i)
  {
    VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs());
  }
}

EIGEN_DECLARE_TEST(qtvector)
{
  // some non vectorizable fixed sizes
  CALL_SUBTEST(check_qtvector_matrix(Vector2f()));
  CALL_SUBTEST(check_qtvector_matrix(Matrix3f()));
  CALL_SUBTEST(check_qtvector_matrix(Matrix3d()));

  // some vectorizable fixed sizes
  CALL_SUBTEST(check_qtvector_matrix(Matrix2f()));
  CALL_SUBTEST(check_qtvector_matrix(Vector4f()));
  CALL_SUBTEST(check_qtvector_matrix(Matrix4f()));
  CALL_SUBTEST(check_qtvector_matrix(Matrix4d()));

  // some dynamic sizes
  CALL_SUBTEST(check_qtvector_matrix(MatrixXd(1,1)));
  CALL_SUBTEST(check_qtvector_matrix(VectorXd(20)));
  CALL_SUBTEST(check_qtvector_matrix(RowVectorXf(20)));
  CALL_SUBTEST(check_qtvector_matrix(MatrixXcf(10,10)));

  // some Transform
  CALL_SUBTEST(check_qtvector_transform(Affine2f()));
  CALL_SUBTEST(check_qtvector_transform(Affine3f()));
  CALL_SUBTEST(check_qtvector_transform(Affine3d()));
  //CALL_SUBTEST(check_qtvector_transform(Transform4d()));

  // some Quaternion
  CALL_SUBTEST(check_qtvector_quaternion(Quaternionf()));
  CALL_SUBTEST(check_qtvector_quaternion(Quaternionf()));
}