aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/qr_fullpivoting.cpp
blob: 150b4256c537f2d4e52c92309b688b7c09ad3047 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/QR>

template<typename MatrixType> void qr()
{
  static const int Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime;
  Index max_size = EIGEN_TEST_MAX_SIZE;
  Index min_size = numext::maxi(1,EIGEN_TEST_MAX_SIZE/10);
  Index rows  = Rows == Dynamic ? internal::random<Index>(min_size,max_size) : Rows,
        cols  = Cols == Dynamic ? internal::random<Index>(min_size,max_size) : Cols,
        cols2 = Cols == Dynamic ? internal::random<Index>(min_size,max_size) : Cols,
        rank  = internal::random<Index>(1, (std::min)(rows, cols)-1);

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
  MatrixType m1;
  createRandomPIMatrixOfRank(rank,rows,cols,m1);
  FullPivHouseholderQR<MatrixType> qr(m1);
  VERIFY_IS_EQUAL(rank, qr.rank());
  VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
  VERIFY(!qr.isInjective());
  VERIFY(!qr.isInvertible());
  VERIFY(!qr.isSurjective());

  MatrixType r = qr.matrixQR();
  
  MatrixQType q = qr.matrixQ();
  VERIFY_IS_UNITARY(q);
  
  // FIXME need better way to construct trapezoid
  for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);

  MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse();

  VERIFY_IS_APPROX(m1, c);
  
  // stress the ReturnByValue mechanism
  MatrixType tmp;
  VERIFY_IS_APPROX(tmp.noalias() = qr.matrixQ() * r, (qr.matrixQ() * r).eval());
  
  MatrixType m2 = MatrixType::Random(cols,cols2);
  MatrixType m3 = m1*m2;
  m2 = MatrixType::Random(cols,cols2);
  m2 = qr.solve(m3);
  VERIFY_IS_APPROX(m3, m1*m2);

  {
    Index size = rows;
    do {
      m1 = MatrixType::Random(size,size);
      qr.compute(m1);
    } while(!qr.isInvertible());
    MatrixType m1_inv = qr.inverse();
    m3 = m1 * MatrixType::Random(size,cols2);
    m2 = qr.solve(m3);
    VERIFY_IS_APPROX(m2, m1_inv*m3);
  }
}

template<typename MatrixType> void qr_invertible()
{
  using std::log;
  using std::abs;
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  typedef typename MatrixType::Scalar Scalar;

  Index max_size = numext::mini(50,EIGEN_TEST_MAX_SIZE);
  Index min_size = numext::maxi(1,EIGEN_TEST_MAX_SIZE/10);
  Index size = internal::random<Index>(min_size,max_size);

  MatrixType m1(size, size), m2(size, size), m3(size, size);
  m1 = MatrixType::Random(size,size);

  if (internal::is_same<RealScalar,float>::value)
  {
    // let's build a matrix more stable to inverse
    MatrixType a = MatrixType::Random(size,size*2);
    m1 += a * a.adjoint();
  }

  FullPivHouseholderQR<MatrixType> qr(m1);
  VERIFY(qr.isInjective());
  VERIFY(qr.isInvertible());
  VERIFY(qr.isSurjective());

  m3 = MatrixType::Random(size,size);
  m2 = qr.solve(m3);
  VERIFY_IS_APPROX(m3, m1*m2);

  // now construct a matrix with prescribed determinant
  m1.setZero();
  for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
  RealScalar absdet = abs(m1.diagonal().prod());
  m3 = qr.matrixQ(); // get a unitary
  m1 = m3 * m1 * m3;
  qr.compute(m1);
  VERIFY_IS_APPROX(absdet, qr.absDeterminant());
  VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
}

template<typename MatrixType> void qr_verify_assert()
{
  MatrixType tmp;

  FullPivHouseholderQR<MatrixType> qr;
  VERIFY_RAISES_ASSERT(qr.matrixQR())
  VERIFY_RAISES_ASSERT(qr.solve(tmp))
  VERIFY_RAISES_ASSERT(qr.matrixQ())
  VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
  VERIFY_RAISES_ASSERT(qr.isInjective())
  VERIFY_RAISES_ASSERT(qr.isSurjective())
  VERIFY_RAISES_ASSERT(qr.isInvertible())
  VERIFY_RAISES_ASSERT(qr.inverse())
  VERIFY_RAISES_ASSERT(qr.absDeterminant())
  VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}

EIGEN_DECLARE_TEST(qr_fullpivoting)
{
  for(int i = 0; i < 1; i++) {
    CALL_SUBTEST_5( qr<Matrix3f>() );
    CALL_SUBTEST_6( qr<Matrix3d>() );
    CALL_SUBTEST_8( qr<Matrix2f>() );
    CALL_SUBTEST_1( qr<MatrixXf>() );
    CALL_SUBTEST_2( qr<MatrixXd>() );
    CALL_SUBTEST_3( qr<MatrixXcd>() );
  }

  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
    CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
    CALL_SUBTEST_4( qr_invertible<MatrixXcf>() );
    CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
  }

  CALL_SUBTEST_5(qr_verify_assert<Matrix3f>());
  CALL_SUBTEST_6(qr_verify_assert<Matrix3d>());
  CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
  CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
  CALL_SUBTEST_4(qr_verify_assert<MatrixXcf>());
  CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());

  // Test problem size constructors
  CALL_SUBTEST_7(FullPivHouseholderQR<MatrixXf>(10, 20));
  CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,10,20> >(10,20)));
  CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,10,20> >(Matrix<float,10,20>::Random())));
  CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,20,10> >(20,10)));
  CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,20,10> >(Matrix<float,20,10>::Random())));
}