aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/qr_colpivoting.cpp
blob: 06f16438f1c0f03a097801d98656dd501ef4e94a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/QR>
#include <Eigen/SVD>
#include "solverbase.h"

template <typename MatrixType>
void cod() {
  STATIC_CHECK(( internal::is_same<typename CompleteOrthogonalDecomposition<MatrixType>::StorageIndex,int>::value ));

  Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
  Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
  Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
  Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
                 MatrixType::RowsAtCompileTime>
      MatrixQType;
  MatrixType matrix;
  createRandomPIMatrixOfRank(rank, rows, cols, matrix);
  CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
  VERIFY(rank == cod.rank());
  VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
  VERIFY(!cod.isInjective());
  VERIFY(!cod.isInvertible());
  VERIFY(!cod.isSurjective());

  MatrixQType q = cod.householderQ();
  VERIFY_IS_UNITARY(q);

  MatrixType z = cod.matrixZ();
  VERIFY_IS_UNITARY(z);

  MatrixType t;
  t.setZero(rows, cols);
  t.topLeftCorner(rank, rank) =
      cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();

  MatrixType c = q * t * z * cod.colsPermutation().inverse();
  VERIFY_IS_APPROX(matrix, c);

  check_solverbase<MatrixType, MatrixType>(matrix, cod, rows, cols, cols2);

  // Verify that we get the same minimum-norm solution as the SVD.
  MatrixType exact_solution = MatrixType::Random(cols, cols2);
  MatrixType rhs = matrix * exact_solution;
  MatrixType cod_solution = cod.solve(rhs);
  JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
  MatrixType svd_solution = svd.solve(rhs);
  VERIFY_IS_APPROX(cod_solution, svd_solution);

  MatrixType pinv = cod.pseudoInverse();
  VERIFY_IS_APPROX(cod_solution, pinv * rhs);
}

template <typename MatrixType, int Cols2>
void cod_fixedsize() {
  enum {
    Rows = MatrixType::RowsAtCompileTime,
    Cols = MatrixType::ColsAtCompileTime
  };
  typedef typename MatrixType::Scalar Scalar;
  typedef CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > COD;
  int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
  Matrix<Scalar, Rows, Cols> matrix;
  createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
  COD cod(matrix);
  VERIFY(rank == cod.rank());
  VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
  VERIFY(cod.isInjective() == (rank == Rows));
  VERIFY(cod.isSurjective() == (rank == Cols));
  VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));

  check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(matrix, cod, Rows, Cols, Cols2);

  // Verify that we get the same minimum-norm solution as the SVD.
  Matrix<Scalar, Cols, Cols2> exact_solution;
  exact_solution.setRandom(Cols, Cols2);
  Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
  Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
  JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
  Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
  VERIFY_IS_APPROX(cod_solution, svd_solution);

  typename Inverse<COD>::PlainObject pinv = cod.pseudoInverse();
  VERIFY_IS_APPROX(cod_solution, pinv * rhs);
}

template<typename MatrixType> void qr()
{
  using std::sqrt;

  STATIC_CHECK(( internal::is_same<typename ColPivHouseholderQR<MatrixType>::StorageIndex,int>::value ));

  Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
  Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);

  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
  MatrixType m1;
  createRandomPIMatrixOfRank(rank,rows,cols,m1);
  ColPivHouseholderQR<MatrixType> qr(m1);
  VERIFY_IS_EQUAL(rank, qr.rank());
  VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
  VERIFY(!qr.isInjective());
  VERIFY(!qr.isInvertible());
  VERIFY(!qr.isSurjective());

  MatrixQType q = qr.householderQ();
  VERIFY_IS_UNITARY(q);

  MatrixType r = qr.matrixQR().template triangularView<Upper>();
  MatrixType c = q * r * qr.colsPermutation().inverse();
  VERIFY_IS_APPROX(m1, c);

  // Verify that the absolute value of the diagonal elements in R are
  // non-increasing until they reach the singularity threshold.
  RealScalar threshold =
      sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
  for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
    RealScalar x = numext::abs(r(i, i));
    RealScalar y = numext::abs(r(i + 1, i + 1));
    if (x < threshold && y < threshold) continue;
    if (!test_isApproxOrLessThan(y, x)) {
      for (Index j = 0; j < (std::min)(rows, cols); ++j) {
        std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
      }
      std::cout << "Failure at i=" << i << ", rank=" << rank
                << ", threshold=" << threshold << std::endl;
    }
    VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
  }

  check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2);

  {
    MatrixType m2, m3;
    Index size = rows;
    do {
      m1 = MatrixType::Random(size,size);
      qr.compute(m1);
    } while(!qr.isInvertible());
    MatrixType m1_inv = qr.inverse();
    m3 = m1 * MatrixType::Random(size,cols2);
    m2 = qr.solve(m3);
    VERIFY_IS_APPROX(m2, m1_inv*m3);
  }
}

template<typename MatrixType, int Cols2> void qr_fixedsize()
{
  using std::sqrt;
  using std::abs;
  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
  Matrix<Scalar,Rows,Cols> m1;
  createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
  ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
  VERIFY_IS_EQUAL(rank, qr.rank());
  VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
  VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
  VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
  VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));

  Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
  Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
  VERIFY_IS_APPROX(m1, c);

  check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2);

  // Verify that the absolute value of the diagonal elements in R are
  // non-increasing until they reache the singularity threshold.
  RealScalar threshold =
      sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
  for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
    RealScalar x = numext::abs(r(i, i));
    RealScalar y = numext::abs(r(i + 1, i + 1));
    if (x < threshold && y < threshold) continue;
    if (!test_isApproxOrLessThan(y, x)) {
      for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
        std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
      }
      std::cout << "Failure at i=" << i << ", rank=" << rank
                << ", threshold=" << threshold << std::endl;
    }
    VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
  }
}

// This test is meant to verify that pivots are chosen such that
// even for a graded matrix, the diagonal of R falls of roughly
// monotonically until it reaches the threshold for singularity.
// We use the so-called Kahan matrix, which is a famous counter-example
// for rank-revealing QR. See
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// page 3 for more detail.
template<typename MatrixType> void qr_kahan_matrix()
{
  using std::sqrt;
  using std::abs;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;

  Index rows = 300, cols = rows;

  MatrixType m1;
  m1.setZero(rows,cols);
  RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
  RealScalar c = std::sqrt(1 - s*s);
  RealScalar pow_s_i(1.0); // pow(s,i)
  for (Index i = 0; i < rows; ++i) {
    m1(i, i) = pow_s_i;
    m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1);
    pow_s_i *= s;
  }
  m1 = (m1 + m1.transpose()).eval();
  ColPivHouseholderQR<MatrixType> qr(m1);
  MatrixType r = qr.matrixQR().template triangularView<Upper>();

  RealScalar threshold =
      std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
  for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
    RealScalar x = numext::abs(r(i, i));
    RealScalar y = numext::abs(r(i + 1, i + 1));
    if (x < threshold && y < threshold) continue;
    if (!test_isApproxOrLessThan(y, x)) {
      for (Index j = 0; j < (std::min)(rows, cols); ++j) {
        std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
      }
      std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
                << ", threshold=" << threshold << std::endl;
    }
    VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
  }
}

template<typename MatrixType> void qr_invertible()
{
  using std::log;
  using std::abs;
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  typedef typename MatrixType::Scalar Scalar;

  int size = internal::random<int>(10,50);

  MatrixType m1(size, size), m2(size, size), m3(size, size);
  m1 = MatrixType::Random(size,size);

  if (internal::is_same<RealScalar,float>::value)
  {
    // let's build a matrix more stable to inverse
    MatrixType a = MatrixType::Random(size,size*2);
    m1 += a * a.adjoint();
  }

  ColPivHouseholderQR<MatrixType> qr(m1);

  check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);

  // now construct a matrix with prescribed determinant
  m1.setZero();
  for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
  RealScalar absdet = abs(m1.diagonal().prod());
  m3 = qr.householderQ(); // get a unitary
  m1 = m3 * m1 * m3;
  qr.compute(m1);
  VERIFY_IS_APPROX(absdet, qr.absDeterminant());
  VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
}

template<typename MatrixType> void qr_verify_assert()
{
  MatrixType tmp;

  ColPivHouseholderQR<MatrixType> qr;
  VERIFY_RAISES_ASSERT(qr.matrixQR())
  VERIFY_RAISES_ASSERT(qr.solve(tmp))
  VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
  VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
  VERIFY_RAISES_ASSERT(qr.householderQ())
  VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
  VERIFY_RAISES_ASSERT(qr.isInjective())
  VERIFY_RAISES_ASSERT(qr.isSurjective())
  VERIFY_RAISES_ASSERT(qr.isInvertible())
  VERIFY_RAISES_ASSERT(qr.inverse())
  VERIFY_RAISES_ASSERT(qr.absDeterminant())
  VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}

template<typename MatrixType> void cod_verify_assert()
{
  MatrixType tmp;

  CompleteOrthogonalDecomposition<MatrixType> cod;
  VERIFY_RAISES_ASSERT(cod.matrixQTZ())
  VERIFY_RAISES_ASSERT(cod.solve(tmp))
  VERIFY_RAISES_ASSERT(cod.transpose().solve(tmp))
  VERIFY_RAISES_ASSERT(cod.adjoint().solve(tmp))
  VERIFY_RAISES_ASSERT(cod.householderQ())
  VERIFY_RAISES_ASSERT(cod.dimensionOfKernel())
  VERIFY_RAISES_ASSERT(cod.isInjective())
  VERIFY_RAISES_ASSERT(cod.isSurjective())
  VERIFY_RAISES_ASSERT(cod.isInvertible())
  VERIFY_RAISES_ASSERT(cod.pseudoInverse())
  VERIFY_RAISES_ASSERT(cod.absDeterminant())
  VERIFY_RAISES_ASSERT(cod.logAbsDeterminant())
}

EIGEN_DECLARE_TEST(qr_colpivoting)
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( qr<MatrixXf>() );
    CALL_SUBTEST_2( qr<MatrixXd>() );
    CALL_SUBTEST_3( qr<MatrixXcd>() );
    CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
    CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
    CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
  }

  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( cod<MatrixXf>() );
    CALL_SUBTEST_2( cod<MatrixXd>() );
    CALL_SUBTEST_3( cod<MatrixXcd>() );
    CALL_SUBTEST_4(( cod_fixedsize<Matrix<float,3,5>, 4 >() ));
    CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,6,2>, 3 >() ));
    CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,1,1>, 1 >() ));
  }

  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
    CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
    CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
    CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
  }

  CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
  CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
  CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
  CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
  CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
  CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());

  CALL_SUBTEST_7(cod_verify_assert<Matrix3f>());
  CALL_SUBTEST_8(cod_verify_assert<Matrix3d>());
  CALL_SUBTEST_1(cod_verify_assert<MatrixXf>());
  CALL_SUBTEST_2(cod_verify_assert<MatrixXd>());
  CALL_SUBTEST_6(cod_verify_assert<MatrixXcf>());
  CALL_SUBTEST_3(cod_verify_assert<MatrixXcd>());

  // Test problem size constructors
  CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));

  CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
  CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
}