aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/qr.cpp
blob: add4aa58074cb8da30a1cc9e944dbc160499b748 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/QR>

template<typename MatrixType> void qr(const MatrixType& m)
{
  /* this test covers the following files: QR.h */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;

  MatrixType a = MatrixType::Random(rows,cols);
  QR<MatrixType> qrOfA(a);
  VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
  VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());

  SquareMatrixType b = a.adjoint() * a;

  // check tridiagonalization
  Tridiagonalization<SquareMatrixType> tridiag(b);
  VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());

  // check hessenberg decomposition
  HessenbergDecomposition<SquareMatrixType> hess(b);
  VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
  VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
  b = SquareMatrixType::Random(cols,cols);
  hess.compute(b);
  VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
}

template<typename Derived>
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
{
  typedef typename Derived::RealScalar RealScalar;
  for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
  {
    RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
    int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
    int j;
    do {
      j = Eigen::ei_random<int>(0,m.rows()-1);
    } while (i==j); // j is another one (must be different)
    m.row(i) += d * m.row(j);

    i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
    do {
      j = Eigen::ei_random<int>(0,m.cols()-1);
    } while (i==j); // j is another one (must be different)
    m.col(i) += d * m.col(j);
  }
}

template<typename MatrixType> void qr_non_invertible()
{
  /* this test covers the following files: QR.h */
  // NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
  int rows = ei_random<int>(20,200), cols = ei_random<int>(20,rows), cols2 = ei_random<int>(20,rows);
  int rank = ei_random<int>(1, std::min(rows, cols)-1);

  MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
  m1 = MatrixType::Random(rows,cols);
  if(rows <= cols)
    for(int i = rank; i < rows; i++) m1.row(i).setZero();
  else
    for(int i = rank; i < cols; i++) m1.col(i).setZero();
  doSomeRankPreservingOperations(m1);

  QR<MatrixType> lu(m1);
//   typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
//   typename LU<MatrixType>::ImageResultType m1image = lu.image();
  std::cerr << rows << "x" << cols << "   " << rank << " " << lu.rank() << "\n";
  if (rank != lu.rank())
    std::cerr << lu.matrixR().diagonal().transpose() << "\n";
  VERIFY(rank == lu.rank());
  VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
  VERIFY(!lu.isInjective());
  VERIFY(!lu.isInvertible());
  VERIFY(lu.isSurjective() == (lu.rank() == rows));
//   VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
//   VERIFY(m1image.lu().rank() == rank);
//   MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
//   sidebyside << m1, m1image;
//   VERIFY(sidebyside.lu().rank() == rank);
  m2 = MatrixType::Random(cols,cols2);
  m3 = m1*m2;
  m2 = MatrixType::Random(cols,cols2);
  lu.solve(m3, &m2);
  VERIFY_IS_APPROX(m3, m1*m2);
  m3 = MatrixType::Random(rows,cols2);
  VERIFY(!lu.solve(m3, &m2));
}

template<typename MatrixType> void qr_invertible()
{
  /* this test covers the following files: QR.h */
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  int size = ei_random<int>(10,200);

  MatrixType m1(size, size), m2(size, size), m3(size, size);
  m1 = MatrixType::Random(size,size);

  if (ei_is_same_type<RealScalar,float>::ret)
  {
    // let's build a matrix more stable to inverse
    MatrixType a = MatrixType::Random(size,size*2);
    m1 += a * a.adjoint();
  }

  QR<MatrixType> lu(m1);
  VERIFY(0 == lu.dimensionOfKernel());
  VERIFY(size == lu.rank());
  VERIFY(lu.isInjective());
  VERIFY(lu.isSurjective());
  VERIFY(lu.isInvertible());
//   VERIFY(lu.image().lu().isInvertible());
  m3 = MatrixType::Random(size,size);
  lu.solve(m3, &m2);
  //std::cerr << m3 - m1*m2 << "\n\n";
  VERIFY_IS_APPROX(m3, m1*m2);
//   VERIFY_IS_APPROX(m2, lu.inverse()*m3);
  m3 = MatrixType::Random(size,size);
  VERIFY(lu.solve(m3, &m2));
}

void test_qr()
{
  for(int i = 0; i < 1; i++) {
//     CALL_SUBTEST( qr(Matrix2f()) );
//     CALL_SUBTEST( qr(Matrix4d()) );
//     CALL_SUBTEST( qr(MatrixXf(12,8)) );
//     CALL_SUBTEST( qr(MatrixXcd(5,5)) );
//     CALL_SUBTEST( qr(MatrixXcd(7,3)) );
  }

  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( qr_non_invertible<MatrixXf>() );
//     CALL_SUBTEST( qr_non_invertible<MatrixXd>() );
    // TODO fix issue with complex
//     CALL_SUBTEST( qr_non_invertible<MatrixXcf>() );
//     CALL_SUBTEST( qr_non_invertible<MatrixXcd>() );
//     CALL_SUBTEST( qr_invertible<MatrixXf>() );
//     CALL_SUBTEST( qr_invertible<MatrixXd>() );
    // TODO fix issue with complex
//     CALL_SUBTEST( qr_invertible<MatrixXcf>() );
//     CALL_SUBTEST( qr_invertible<MatrixXcd>() );
  }
}