aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/product_small.cpp
blob: fdfdd9f6c54ecfdbe163207732366a9853ab1dd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_NO_STATIC_ASSERT
#include "product.h"
#include <Eigen/LU>

// regression test for bug 447
template<int>
void product1x1()
{
  Matrix<float,1,3> matAstatic;
  Matrix<float,3,1> matBstatic;
  matAstatic.setRandom();
  matBstatic.setRandom();
  VERIFY_IS_APPROX( (matAstatic * matBstatic).coeff(0,0), 
                    matAstatic.cwiseProduct(matBstatic.transpose()).sum() );

  MatrixXf matAdynamic(1,3);
  MatrixXf matBdynamic(3,1);
  matAdynamic.setRandom();
  matBdynamic.setRandom();
  VERIFY_IS_APPROX( (matAdynamic * matBdynamic).coeff(0,0), 
                    matAdynamic.cwiseProduct(matBdynamic.transpose()).sum() );
}

template<typename TC, typename TA, typename TB>
const TC& ref_prod(TC &C, const TA &A, const TB &B)
{
  for(Index i=0;i<C.rows();++i)
    for(Index j=0;j<C.cols();++j)
      for(Index k=0;k<A.cols();++k)
        C.coeffRef(i,j) += A.coeff(i,k) * B.coeff(k,j);
  return C;
}

template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB>
typename internal::enable_if<! ( (Rows ==1&&Depth!=1&&OA==ColMajor)
                              || (Depth==1&&Rows !=1&&OA==RowMajor)
                              || (Cols ==1&&Depth!=1&&OB==RowMajor)
                              || (Depth==1&&Cols !=1&&OB==ColMajor)
                              || (Rows ==1&&Cols !=1&&OC==ColMajor)
                              || (Cols ==1&&Rows !=1&&OC==RowMajor)),void>::type
test_lazy_single(int rows, int cols, int depth)
{
  Matrix<T,Rows,Depth,OA> A(rows,depth); A.setRandom();
  Matrix<T,Depth,Cols,OB> B(depth,cols); B.setRandom();
  Matrix<T,Rows,Cols,OC>  C(rows,cols);  C.setRandom();
  Matrix<T,Rows,Cols,OC>  D(C);
  VERIFY_IS_APPROX(C+=A.lazyProduct(B), ref_prod(D,A,B));
}

template<typename T, int Rows, int Cols, int Depth, int OC, int OA, int OB>
typename internal::enable_if<  ( (Rows ==1&&Depth!=1&&OA==ColMajor)
                              || (Depth==1&&Rows !=1&&OA==RowMajor)
                              || (Cols ==1&&Depth!=1&&OB==RowMajor)
                              || (Depth==1&&Cols !=1&&OB==ColMajor)
                              || (Rows ==1&&Cols !=1&&OC==ColMajor)
                              || (Cols ==1&&Rows !=1&&OC==RowMajor)),void>::type
test_lazy_single(int, int, int)
{
}

template<typename T, int Rows, int Cols, int Depth>
void test_lazy_all_layout(int rows=Rows, int cols=Cols, int depth=Depth)
{
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,ColMajor>(rows,cols,depth) ));
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,ColMajor>(rows,cols,depth) ));
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,ColMajor>(rows,cols,depth) ));
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,ColMajor>(rows,cols,depth) ));
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,ColMajor,RowMajor>(rows,cols,depth) ));
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,ColMajor,RowMajor>(rows,cols,depth) ));
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,ColMajor,RowMajor,RowMajor>(rows,cols,depth) ));
  CALL_SUBTEST(( test_lazy_single<T,Rows,Cols,Depth,RowMajor,RowMajor,RowMajor>(rows,cols,depth) ));
}

template<typename T>
void test_lazy_l1()
{
  int rows = internal::random<int>(1,12);
  int cols = internal::random<int>(1,12);
  int depth = internal::random<int>(1,12);

  // Inner
  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,1>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,3>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,8>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,9>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,1,-1>(1,1,depth) ));

  // Outer
  CALL_SUBTEST(( test_lazy_all_layout<T,2,1,1>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,2,1>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,2,2,1>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,3,3,1>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,4,1>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,8,1>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,1>(4,cols) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,7,-1,1>(7,cols) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,-1,8,1>(rows) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,-1,3,1>(rows) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,-1,-1,1>(rows,cols) ));
}

template<typename T>
void test_lazy_l2()
{
  int rows = internal::random<int>(1,12);
  int cols = internal::random<int>(1,12);
  int depth = internal::random<int>(1,12);

  // mat-vec
  CALL_SUBTEST(( test_lazy_all_layout<T,2,1,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,2,1,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,5,1,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,5>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,6>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,6,1,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,8,1,8>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,4>(rows) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,1,-1>(4,1,depth) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,-1,1,-1>(rows,1,depth) ));

  // vec-mat
  CALL_SUBTEST(( test_lazy_all_layout<T,1,2,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,2,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,5,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,5>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,4,6>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,6,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,8,8>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,-1, 4>(1,cols) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1, 4,-1>(1,4,depth) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,1,-1,-1>(1,cols,depth) ));
}

template<typename T>
void test_lazy_l3()
{
  int rows = internal::random<int>(1,12);
  int cols = internal::random<int>(1,12);
  int depth = internal::random<int>(1,12);
  // mat-mat
  CALL_SUBTEST(( test_lazy_all_layout<T,2,4,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,3,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,8,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,5,6,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,2,5>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,7,6>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,6,8,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,8,3,8>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,4>(rows) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,3,-1>(4,3,depth) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,-1,6,-1>(rows,6,depth) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,8,2,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,5,2,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,4,2>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,8,4,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,6,5,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,4,5>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,3,4,6>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,2,6,4>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,7,8,8>() ));
  CALL_SUBTEST(( test_lazy_all_layout<T,8,-1, 4>(8,cols) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,3, 4,-1>(3,4,depth) ));
  CALL_SUBTEST(( test_lazy_all_layout<T,4,-1,-1>(4,cols,depth) ));
}

template<typename T,int N,int M,int K>
void test_linear_but_not_vectorizable()
{
  // Check tricky cases for which the result of the product is a vector and thus must exhibit the LinearBit flag,
  // but is not vectorizable along the linear dimension.
  Index n = N==Dynamic ? internal::random<Index>(1,32) : N;
  Index m = M==Dynamic ? internal::random<Index>(1,32) : M;
  Index k = K==Dynamic ? internal::random<Index>(1,32) : K;

  {
    Matrix<T,N,M+1> A; A.setRandom(n,m+1);
    Matrix<T,M*2,K> B; B.setRandom(m*2,k);
    Matrix<T,1,K> C;
    Matrix<T,1,K> R;

    C.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>());
    R.noalias() = A.template topLeftCorner<1,M>() * (B.template topRows<M>()+B.template bottomRows<M>()).eval();
    VERIFY_IS_APPROX(C,R);
  }

  {
    Matrix<T,M+1,N,RowMajor> A; A.setRandom(m+1,n);
    Matrix<T,K,M*2,RowMajor> B; B.setRandom(k,m*2);
    Matrix<T,K,1> C;
    Matrix<T,K,1> R;

    C.noalias() = (B.template leftCols<M>()+B.template rightCols<M>())        * A.template topLeftCorner<M,1>();
    R.noalias() = (B.template leftCols<M>()+B.template rightCols<M>()).eval() * A.template topLeftCorner<M,1>();
    VERIFY_IS_APPROX(C,R);
  }
}

template<int Rows>
void bug_1311()
{
  Matrix< double, Rows, 2 > A;  A.setRandom();
  Vector2d b = Vector2d::Random() ;
  Matrix<double,Rows,1> res;
  res.noalias() = 1. * (A * b);
  VERIFY_IS_APPROX(res, A*b);
  res.noalias() = 1.*A * b;
  VERIFY_IS_APPROX(res, A*b);
  res.noalias() = (1.*A).lazyProduct(b);
  VERIFY_IS_APPROX(res, A*b);
  res.noalias() = (1.*A).lazyProduct(1.*b);
  VERIFY_IS_APPROX(res, A*b);
  res.noalias() = (A).lazyProduct(1.*b);
  VERIFY_IS_APPROX(res, A*b);
}

void test_product_small()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( product(Matrix<float, 3, 2>()) );
    CALL_SUBTEST_2( product(Matrix<int, 3, 17>()) );
    CALL_SUBTEST_8( product(Matrix<double, 3, 17>()) );
    CALL_SUBTEST_3( product(Matrix3d()) );
    CALL_SUBTEST_4( product(Matrix4d()) );
    CALL_SUBTEST_5( product(Matrix4f()) );
    CALL_SUBTEST_6( product1x1<0>() );

    CALL_SUBTEST_11( test_lazy_l1<float>() );
    CALL_SUBTEST_12( test_lazy_l2<float>() );
    CALL_SUBTEST_13( test_lazy_l3<float>() );

    CALL_SUBTEST_21( test_lazy_l1<double>() );
    CALL_SUBTEST_22( test_lazy_l2<double>() );
    CALL_SUBTEST_23( test_lazy_l3<double>() );

    CALL_SUBTEST_31( test_lazy_l1<std::complex<float> >() );
    CALL_SUBTEST_32( test_lazy_l2<std::complex<float> >() );
    CALL_SUBTEST_33( test_lazy_l3<std::complex<float> >() );

    CALL_SUBTEST_41( test_lazy_l1<std::complex<double> >() );
    CALL_SUBTEST_42( test_lazy_l2<std::complex<double> >() );
    CALL_SUBTEST_43( test_lazy_l3<std::complex<double> >() );

    CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,Dynamic>() ));
    CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,3,1,Dynamic>() ));
    CALL_SUBTEST_7(( test_linear_but_not_vectorizable<float,2,1,16>() ));

    CALL_SUBTEST_6( bug_1311<3>() );
    CALL_SUBTEST_6( bug_1311<5>() );
  }

#ifdef EIGEN_TEST_PART_6
  {
    // test compilation of (outer_product) * vector
    Vector3f v = Vector3f::Random();
    VERIFY_IS_APPROX( (v * v.transpose()) * v, (v * v.transpose()).eval() * v);
  }
  
  {
    // regression test for pull-request #93
    Eigen::Matrix<double, 1, 1> A;  A.setRandom();
    Eigen::Matrix<double, 18, 1> B; B.setRandom();
    Eigen::Matrix<double, 1, 18> C; C.setRandom();
    VERIFY_IS_APPROX(B * A.inverse(), B * A.inverse()[0]);
    VERIFY_IS_APPROX(A.inverse() * C, A.inverse()[0] * C);
  }

  {
    Eigen::Matrix<double, 10, 10> A, B, C;
    A.setRandom();
    C = A;
    for(int k=0; k<79; ++k)
      C = C * A;
    B.noalias() = (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)))
                * (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)));
    VERIFY_IS_APPROX(B,C);
  }
#endif
}