aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/product_large.cpp
blob: 1c33578beb7e5909c9e49c0256795f92136a95be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "product.h"

void test_product_large()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( product(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
    CALL_SUBTEST( product(MatrixXd(ei_random<int>(1,320), ei_random<int>(1,320))) );
    CALL_SUBTEST( product(MatrixXi(ei_random<int>(1,320), ei_random<int>(1,320))) );
    CALL_SUBTEST( product(MatrixXcf(ei_random<int>(1,50), ei_random<int>(1,50))) );
    CALL_SUBTEST( product(Matrix<float,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,320), ei_random<int>(1,320))) );
  }

  {
    // test a specific issue in DiagonalProduct
    int N = 1000000;
    VectorXf v = VectorXf::Ones(N);
    MatrixXf m = MatrixXf::Ones(N,3);
    m = (v+v).asDiagonal() * m;
    VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2));
  }
}