aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/product_extra.cpp
blob: 744a1ef7f369a2e2e368202165e61f898b23df5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

template<typename MatrixType> void product_extra(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
  typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
  typedef Matrix<Scalar, Dynamic, Dynamic,
                         MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;

  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols),
             mzero = MatrixType::Zero(rows, cols),
             identity = MatrixType::Identity(rows, rows),
             square = MatrixType::Random(rows, rows),
             res = MatrixType::Random(rows, rows),
             square2 = MatrixType::Random(cols, cols),
             res2 = MatrixType::Random(cols, cols);
  RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
  ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
  OtherMajorMatrixType tm1 = m1;

  Scalar s1 = internal::random<Scalar>(),
         s2 = internal::random<Scalar>(),
         s3 = internal::random<Scalar>();

  VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval());
  VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval());
  VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2);
  VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2);
  VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2);
  VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval());
  VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2);
  VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval());

  // a very tricky case where a scale factor has to be automatically conjugated:
  VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());


  // test all possible conjugate combinations for the four matrix-vector product cases:

  VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
                   (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
  VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
                   (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
  VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
                   (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());

  VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
                   (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
  VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
                   (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
  VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
                   (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());

  VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
                   (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
  VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
                   (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
  VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
                   (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());

  VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
                   (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
  VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
                   (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
  VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
                   (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());

  VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
                   (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());

  // test the vector-matrix product with non aligned starts
  Index i = internal::random<Index>(0,m1.rows()-2);
  Index j = internal::random<Index>(0,m1.cols()-2);
  Index r = internal::random<Index>(1,m1.rows()-i);
  Index c = internal::random<Index>(1,m1.cols()-j);
  Index i2 = internal::random<Index>(0,m1.rows()-1);
  Index j2 = internal::random<Index>(0,m1.cols()-1);

  VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
  VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
  
  // regression test
  MatrixType tmp = m1 * m1.adjoint() * s1;
  VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
}

// Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
void mat_mat_scalar_scalar_product()
{
  Eigen::Matrix2Xd dNdxy(2, 3);
  dNdxy << -0.5, 0.5, 0,
           -0.3, 0, 0.3;
  double det = 6.0, wt = 0.5;
  VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
}
  
void zero_sized_objects()
{
  // Bug 127
  //
  // a product of the form lhs*rhs with
  //
  // lhs:
  // rows = 1, cols = 4
  // RowsAtCompileTime = 1, ColsAtCompileTime = -1
  // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
  //
  // rhs:
  // rows = 4, cols = 0
  // RowsAtCompileTime = -1, ColsAtCompileTime = -1
  // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
  //
  // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
  // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.

  Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
  Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
  a*b;
}

void unaligned_objects()
{
  // Regression test for the bug reported here:
  // http://forum.kde.org/viewtopic.php?f=74&t=107541
  // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
  // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
  // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
  for(int m=450;m<460;++m)
  {
    for(int n=8;n<12;++n)
    {
      MatrixXf M(m, n);
      VectorXf v1(n), r1(500);
      RowVectorXf v2(m), r2(16);

      M.setRandom();
      v1.setRandom();
      v2.setRandom();
      for(int o=0; o<4; ++o)
      {
        r1.segment(o,m).noalias() = M * v1;
        VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1));
        r2.segment(o,n).noalias() = v2 * M;
        VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M);
      }
    }
  }
}

void test_product_extra()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
    CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
  }
  CALL_SUBTEST_5( zero_sized_objects() );
  CALL_SUBTEST_6( unaligned_objects() );
}