1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/Array>
#include <Eigen/QR>
template<typename Derived1, typename Derived2>
bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>())
{
return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
* std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
}
template<typename MatrixType> void product(const MatrixType& m)
{
/* this test covers the following files:
Identity.h Product.h
*/
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
int rows = m.rows();
int cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols);
RowSquareMatrixType
identity = RowSquareMatrixType::Identity(rows, rows),
square = RowSquareMatrixType::Random(rows, rows),
res = RowSquareMatrixType::Random(rows, rows);
ColSquareMatrixType
square2 = ColSquareMatrixType::Random(cols, cols),
res2 = ColSquareMatrixType::Random(cols, cols);
RowVectorType v1 = RowVectorType::Random(rows),
v2 = RowVectorType::Random(rows),
vzero = RowVectorType::Zero(rows);
ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
OtherMajorMatrixType tm1 = m1;
Scalar s1 = ei_random<Scalar>();
int r = ei_random<int>(0, rows-1),
c = ei_random<int>(0, cols-1);
// begin testing Product.h: only associativity for now
// (we use Transpose.h but this doesn't count as a test for it)
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
m3 = m1;
m3 *= m1.transpose() * m2;
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2));
// continue testing Product.h: distributivity
VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
// continue testing Product.h: compatibility with ScalarMultiple.h
VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
// test Product.h together with Identity.h
VERIFY_IS_APPROX(v1, identity*v1);
VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
// again, test operator() to check const-qualification
VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
if (rows!=cols)
VERIFY_RAISES_ASSERT(m3 = m1*m1);
// test the previous tests were not screwed up because operator* returns 0
// (we use the more accurate default epsilon)
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
{
VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
}
// test optimized operator+= path
res = square;
res += (m1 * m2.transpose()).lazy();
VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
{
VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
}
vcres = vc2;
vcres += (m1.transpose() * v1).lazy();
VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
// test optimized operator-= path
res = square;
res -= (m1 * m2.transpose()).lazy();
VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
{
VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
}
vcres = vc2;
vcres -= (m1.transpose() * v1).lazy();
VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
tm1 = m1;
VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
// test submatrix and matrix/vector product
for (int i=0; i<rows; ++i)
res.row(i) = m1.row(i) * m2.transpose();
VERIFY_IS_APPROX(res, m1 * m2.transpose());
// the other way round:
for (int i=0; i<rows; ++i)
res.col(i) = m1 * m2.transpose().col(i);
VERIFY_IS_APPROX(res, m1 * m2.transpose());
res2 = square2;
res2 += (m1.transpose() * m2).lazy();
VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
{
VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
}
}
|