aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/product.h
blob: c6c78fbd8155f8e483fe58292612d3ac34226666 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/QR>

template<typename Derived1, typename Derived2>
bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
{
  return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
                          * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
}

template<typename MatrixType> void product(const MatrixType& m)
{
  /* this test covers the following files:
     Identity.h Product.h
  */
  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
                         MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType;

  Index rows = m.rows();
  Index cols = m.cols();

  // this test relies a lot on Random.h, and there's not much more that we can do
  // to test it, hence I consider that we will have tested Random.h
  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols);
  RowSquareMatrixType
             identity = RowSquareMatrixType::Identity(rows, rows),
             square = RowSquareMatrixType::Random(rows, rows),
             res = RowSquareMatrixType::Random(rows, rows);
  ColSquareMatrixType
             square2 = ColSquareMatrixType::Random(cols, cols),
             res2 = ColSquareMatrixType::Random(cols, cols);
  RowVectorType v1 = RowVectorType::Random(rows);
  ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
  OtherMajorMatrixType tm1 = m1;

  Scalar s1 = internal::random<Scalar>();

  Index r  = internal::random<Index>(0, rows-1),
        c  = internal::random<Index>(0, cols-1),
        c2 = internal::random<Index>(0, cols-1);

  // begin testing Product.h: only associativity for now
  // (we use Transpose.h but this doesn't count as a test for it)
  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
  m3 = m1;
  m3 *= m1.transpose() * m2;
  VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
  VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));

  // continue testing Product.h: distributivity
  VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
  VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);

  // continue testing Product.h: compatibility with ScalarMultiple.h
  VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
  VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));

  // test Product.h together with Identity.h
  VERIFY_IS_APPROX(v1,                      identity*v1);
  VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity);
  // again, test operator() to check const-qualification
  VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));

  if (rows!=cols)
     VERIFY_RAISES_ASSERT(m3 = m1*m1);

  // test the previous tests were not screwed up because operator* returns 0
  // (we use the more accurate default epsilon)
  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
  {
    VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
  }

  // test optimized operator+= path
  res = square;
  res.noalias() += m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
  {
    VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
  }
  vcres = vc2;
  vcres.noalias() += m1.transpose() * v1;
  VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);

  // test optimized operator-= path
  res = square;
  res.noalias() -= m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
  {
    VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
  }
  vcres = vc2;
  vcres.noalias() -= m1.transpose() * v1;
  VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);

  // test scaled products
  res = square;
  res.noalias() = s1 * m1 * m2.transpose();
  VERIFY_IS_APPROX(res, ((s1*m1).eval() * m2.transpose()));
  res = square;
  res.noalias() += s1 * m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square + ((s1*m1).eval() * m2.transpose()));
  res = square;
  res.noalias() -= s1 * m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square - ((s1*m1).eval() * m2.transpose()));

  // test d ?= a+b*c rules
  res.noalias() = square + m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
  res.noalias() += square + m1 * m2.transpose();
  VERIFY_IS_APPROX(res, 2*(square + m1 * m2.transpose()));
  res.noalias() -= square + m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square + m1 * m2.transpose());

  // test d ?= a-b*c rules
  res.noalias() = square - m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square - m1 * m2.transpose());
  res.noalias() += square - m1 * m2.transpose();
  VERIFY_IS_APPROX(res, 2*(square - m1 * m2.transpose()));
  res.noalias() -= square - m1 * m2.transpose();
  VERIFY_IS_APPROX(res, square - m1 * m2.transpose());


  tm1 = m1;
  VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
  VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);

  // test submatrix and matrix/vector product
  for (int i=0; i<rows; ++i)
    res.row(i) = m1.row(i) * m2.transpose();
  VERIFY_IS_APPROX(res, m1 * m2.transpose());
  // the other way round:
  for (int i=0; i<rows; ++i)
    res.col(i) = m1 * m2.transpose().col(i);
  VERIFY_IS_APPROX(res, m1 * m2.transpose());

  res2 = square2;
  res2.noalias() += m1.transpose() * m2;
  VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
  if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
  {
    VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
  }

  VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
  VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());

  // vector at runtime (see bug 1166)
  {
    RowSquareMatrixType ref(square);
    ColSquareMatrixType ref2(square2);
    ref = res = square;
    VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square.transpose(),            (ref.row(0) = m1.col(0).transpose() * square.transpose()));
    VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
    VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square,                        (ref.row(0) = m1.col(0).transpose() * square));
    VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square,             (ref.row(0) = m1.col(0).transpose() * square));
    ref2 = res2 = square2;
    VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2.transpose(),                      (ref2.row(0) = m1.row(0) * square2.transpose()));
    VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2.transpose(),           (ref2.row(0) = m1.row(0) * square2.transpose()));
    VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2,                                  (ref2.row(0) = m1.row(0) * square2));
    VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2,                       (ref2.row(0) = m1.row(0) * square2));
  }

  // vector.block() (see bug 1283)
  {
    RowVectorType w1(rows);
    VERIFY_IS_APPROX(square * v1.block(0,0,rows,1), square * v1);
    VERIFY_IS_APPROX(w1.noalias() = square * v1.block(0,0,rows,1), square * v1);
    VERIFY_IS_APPROX(w1.block(0,0,rows,1).noalias() = square * v1.block(0,0,rows,1), square * v1);

    Matrix<Scalar,1,MatrixType::ColsAtCompileTime> w2(cols);
    VERIFY_IS_APPROX(vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    VERIFY_IS_APPROX(w2.noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);

    vc2 = square2.block(0,0,1,cols).transpose();
    VERIFY_IS_APPROX(square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
    VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);
    VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2);

    vc2 = square2.block(0,0,cols,1);
    VERIFY_IS_APPROX(square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
    VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2);
  }

  // inner product
  {
    Scalar x = square2.row(c) * square2.col(c2);
    VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
  }

  // outer product
  {
    VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
    VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
    VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
    VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
    VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
    VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
  }

  // Aliasing
  {
    ColVectorType x(cols); x.setRandom();
    ColVectorType z(x);
    ColVectorType y(cols); y.setZero();
    ColSquareMatrixType A(cols,cols); A.setRandom();
    // CwiseBinaryOp
    VERIFY_IS_APPROX(x = y + A*x, A*z);
    x = z;
    VERIFY_IS_APPROX(x = y - A*x, A*(-z));
    x = z;
    // CwiseUnaryOp
    VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z);
  }

  // regression for blas_trais
  {
    VERIFY_IS_APPROX(square * (square*square).transpose(), square * square.transpose() * square.transpose());
    VERIFY_IS_APPROX(square * (-(square*square)), -square * square * square);
    VERIFY_IS_APPROX(square * (s1*(square*square)), s1 * square * square * square);
    VERIFY_IS_APPROX(square * (square*square).conjugate(), square * square.conjugate() * square.conjugate());
  }

  // destination with a non-default inner-stride
  // see bug 1741
  if(!MatrixType::IsRowMajor)
  {
    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixX;
    MatrixX buffer(2*rows,2*rows);
    Map<RowSquareMatrixType,0,Stride<Dynamic,2> > map1(buffer.data(),rows,rows,Stride<Dynamic,2>(2*rows,2));
    buffer.setZero();
    VERIFY_IS_APPROX(map1 = m1 * m2.transpose(), (m1 * m2.transpose()).eval());
    buffer.setZero();
    VERIFY_IS_APPROX(map1.noalias() = m1 * m2.transpose(), (m1 * m2.transpose()).eval());
    buffer.setZero();
    VERIFY_IS_APPROX(map1.noalias() += m1 * m2.transpose(), (m1 * m2.transpose()).eval());
  }

}