aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/product.cpp
blob: 2fc50899fd66049e01e4e173f378f229ec74efa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"

template<typename MatrixType> void product(const MatrixType& m)
{
  /* this test covers the following files:
     Identity.h Product.h
  */

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RowSquareMatrixType;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;

  int rows = m.rows();
  int cols = m.cols();

  // this test relies a lot on Random.h, and there's not much more that we can do
  // to test it, hence I consider that we will have tested Random.h
  MatrixType m1 = MatrixType::random(rows, cols),
             m2 = MatrixType::random(rows, cols),
             m3(rows, cols),
             mzero = MatrixType::zero(rows, cols);
  RowSquareMatrixType
             identity = RowSquareMatrixType::identity(rows, rows),
             square = RowSquareMatrixType::random(rows, rows),
             res = RowSquareMatrixType::random(rows, rows);
  ColSquareMatrixType
             square2 = ColSquareMatrixType::random(cols, cols),
             res2 = ColSquareMatrixType::random(cols, cols);
  VectorType v1 = VectorType::random(rows),
             v2 = VectorType::random(rows),
             vzero = VectorType::zero(rows);

  Scalar s1 = ei_random<Scalar>();

  int r = ei_random<int>(0, rows-1),
      c = ei_random<int>(0, cols-1);

  // begin testing Product.h: only associativity for now
  // (we use Transpose.h but this doesn't count as a test for it)
  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
  m3 = m1;
  m3 *= m1.transpose() * m2;
  VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
  VERIFY_IS_APPROX(m3,                      m1.lazy() * (m1.transpose()*m2));

  // continue testing Product.h: distributivity
  VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
  VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);

  // continue testing Product.h: compatibility with ScalarMultiple.h
  VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
  VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));

  // again, test operator() to check const-qualification
  s1 += (square.lazy() * m1)(r,c);

  // test Product.h together with Identity.h
  VERIFY_IS_APPROX(v1,                      identity*v1);
  // again, test operator() to check const-qualification
  VERIFY_IS_APPROX(MatrixType::identity(rows, cols)(r,c), static_cast<Scalar>(r==c));

  if (rows!=cols)
    VERIFY_RAISES_ASSERT(m3 = m1*m1);

  // test the previous tests were not screwed up because operator* returns 0
  VERIFY_IS_NOT_APPROX((m1.transpose()*m2).template cast<FloatingPoint>(), (m2.transpose()*m1).template cast<FloatingPoint>());

  // test optimized operator+= path
  res = square;
  res += (m1 * m2.transpose()).lazy();
  VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
  VERIFY_IS_NOT_APPROX(res.template cast<FloatingPoint>(), (square + m2 * m1.transpose()).template cast<FloatingPoint>());

  res2 = square2;
  res2 += (m1.transpose() * m2).lazy();
  VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
  VERIFY_IS_NOT_APPROX(res2.template cast<FloatingPoint>(), (square2 + m2.transpose() * m1).template cast<FloatingPoint>());
}

void test_product()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( product(Matrix3i()) );
    CALL_SUBTEST( product(Matrix<float, 3, 2>()) );
    CALL_SUBTEST( product(Matrix4d()) );
    CALL_SUBTEST( product(Matrix4f()) );
    CALL_SUBTEST( product(MatrixXf(3,5)) );
    CALL_SUBTEST( product(MatrixXi(28,39)) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( product(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
    CALL_SUBTEST( product(MatrixXd(ei_random<int>(1,320), ei_random<int>(1,320))) );
    CALL_SUBTEST( product(MatrixXi(ei_random<int>(1,256), ei_random<int>(1,256))) );
    CALL_SUBTEST( product(MatrixXcf(ei_random<int>(1,50), ei_random<int>(1,50))) );
    #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
    CALL_SUBTEST( product(Matrix<float,Dynamic,Dynamic,Dynamic,Dynamic,RowMajorBit>(ei_random<int>(1,320), ei_random<int>(1,320))) );
    #else
    CALL_SUBTEST( product(Matrix<float,Dynamic,Dynamic,Dynamic,Dynamic,0>(ei_random<int>(1,320), ei_random<int>(1,320))) );
    #endif
  }
}