aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/permutationmatrices.cpp
blob: 308838c70ad200aef989a42a4ace98f43acd3b43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"

using namespace std;
template<typename MatrixType> void permutationmatrices(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime,
         Options = MatrixType::Options };
  typedef PermutationMatrix<Rows> LeftPermutationType;
  typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
  typedef Map<LeftPermutationType> MapLeftPerm;
  typedef PermutationMatrix<Cols> RightPermutationType;
  typedef Matrix<int, Cols, 1> RightPermutationVectorType;
  typedef Map<RightPermutationType> MapRightPerm;

  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType m_original = MatrixType::Random(rows,cols);
  LeftPermutationVectorType lv;
  randomPermutationVector(lv, rows);
  LeftPermutationType lp(lv);
  RightPermutationVectorType rv;
  randomPermutationVector(rv, cols);
  RightPermutationType rp(rv);
  MatrixType m_permuted = lp * m_original * rp;

  for (int i=0; i<rows; i++)
    for (int j=0; j<cols; j++)
        VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j)));

  Matrix<Scalar,Rows,Rows> lm(lp);
  Matrix<Scalar,Cols,Cols> rm(rp);

  VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);

  VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original);
  VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original);
  VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original);
  
  VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity());
  VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity());
  VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity());

  LeftPermutationVectorType lv2;
  randomPermutationVector(lv2, rows);
  LeftPermutationType lp2(lv2);
  Matrix<Scalar,Rows,Rows> lm2(lp2);
  VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2);
  VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2);
  VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2);

  LeftPermutationType identityp;
  identityp.setIdentity(rows);
  VERIFY_IS_APPROX(m_original, identityp*m_original);

  // check inplace permutations
  m_permuted = m_original;
  m_permuted = lp.inverse() * m_permuted;
  VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original);

  m_permuted = m_original;
  m_permuted = m_permuted * rp.inverse();
  VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse());

  m_permuted = m_original;
  m_permuted = lp * m_permuted;
  VERIFY_IS_APPROX(m_permuted, lp*m_original);

  m_permuted = m_original;
  m_permuted = m_permuted * rp;
  VERIFY_IS_APPROX(m_permuted, m_original*rp);

  if(rows>1 && cols>1)
  {
    lp2 = lp;
    Index i = internal::random<Index>(0, rows-1);
    Index j;
    do j = internal::random<Index>(0, rows-1); while(j==i);
    lp2.applyTranspositionOnTheLeft(i, j);
    lm = lp;
    lm.row(i).swap(lm.row(j));
    VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>());

    RightPermutationType rp2 = rp;
    i = internal::random<Index>(0, cols-1);
    do j = internal::random<Index>(0, cols-1); while(j==i);
    rp2.applyTranspositionOnTheRight(i, j);
    rm = rp;
    rm.col(i).swap(rm.col(j));
    VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>());
  }  
}

void test_permutationmatrices()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( permutationmatrices(Matrix3f()) );
    CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) );
    CALL_SUBTEST_4( permutationmatrices(Matrix4d()) );
    CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) );
    CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) );
    CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) );
  }
}