1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define TEST_ENABLE_TEMPORARY_TRACKING
#include "main.h"
using namespace std;
template<typename MatrixType> void permutationmatrices(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options };
typedef PermutationMatrix<Rows> LeftPermutationType;
typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
typedef Map<LeftPermutationType> MapLeftPerm;
typedef PermutationMatrix<Cols> RightPermutationType;
typedef Matrix<int, Cols, 1> RightPermutationVectorType;
typedef Map<RightPermutationType> MapRightPerm;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m_original = MatrixType::Random(rows,cols);
LeftPermutationVectorType lv;
randomPermutationVector(lv, rows);
LeftPermutationType lp(lv);
RightPermutationVectorType rv;
randomPermutationVector(rv, cols);
RightPermutationType rp(rv);
MatrixType m_permuted = MatrixType::Random(rows,cols);
const int one_if_dynamic = MatrixType::SizeAtCompileTime==Dynamic ? 1 : 0;
VERIFY_EVALUATION_COUNT(m_permuted = lp * m_original * rp, one_if_dynamic); // 1 temp for sub expression "lp * m_original"
for (int i=0; i<rows; i++)
for (int j=0; j<cols; j++)
VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j)));
Matrix<Scalar,Rows,Rows> lm(lp);
Matrix<Scalar,Cols,Cols> rm(rp);
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted = lp * m_permuted * rp, one_if_dynamic);
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original);
VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original);
VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original);
VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity());
VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity());
VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity());
LeftPermutationVectorType lv2;
randomPermutationVector(lv2, rows);
LeftPermutationType lp2(lv2);
Matrix<Scalar,Rows,Rows> lm2(lp2);
VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2);
VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2);
VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2);
LeftPermutationType identityp;
identityp.setIdentity(rows);
VERIFY_IS_APPROX(m_original, identityp*m_original);
// check inplace permutations
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias()= lp.inverse() * m_permuted, one_if_dynamic); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original);
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp.inverse(), one_if_dynamic); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse());
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp * m_permuted, one_if_dynamic); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, lp*m_original);
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp, one_if_dynamic); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, m_original*rp);
if(rows>1 && cols>1)
{
lp2 = lp;
Index i = internal::random<Index>(0, rows-1);
Index j;
do j = internal::random<Index>(0, rows-1); while(j==i);
lp2.applyTranspositionOnTheLeft(i, j);
lm = lp;
lm.row(i).swap(lm.row(j));
VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>());
RightPermutationType rp2 = rp;
i = internal::random<Index>(0, cols-1);
do j = internal::random<Index>(0, cols-1); while(j==i);
rp2.applyTranspositionOnTheRight(i, j);
rm = rp;
rm.col(i).swap(rm.col(j));
VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>());
}
}
template<typename T>
void bug890()
{
typedef Matrix<T, Dynamic, Dynamic> MatrixType;
typedef Matrix<T, Dynamic, 1> VectorType;
typedef Stride<Dynamic,Dynamic> S;
typedef Map<MatrixType, Aligned, S> MapType;
typedef PermutationMatrix<Dynamic> Perm;
VectorType v1(2), v2(2), op(4), rhs(2);
v1 << 666,667;
op << 1,0,0,1;
rhs << 42,42;
Perm P(2);
P.indices() << 1, 0;
MapType(v1.data(),2,1,S(1,1)) = P * MapType(rhs.data(),2,1,S(1,1));
VERIFY_IS_APPROX(v1, (P * rhs).eval());
MapType(v1.data(),2,1,S(1,1)) = P.inverse() * MapType(rhs.data(),2,1,S(1,1));
VERIFY_IS_APPROX(v1, (P.inverse() * rhs).eval());
}
void test_permutationmatrices()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( permutationmatrices(Matrix3f()) );
CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) );
CALL_SUBTEST_4( permutationmatrices(Matrix4d()) );
CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) );
CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) );
CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) );
}
CALL_SUBTEST_5( bug890<double>() );
}
|