aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/numext.cpp
blob: 8a2fde5015bc50baaf41d0c3b3eb8c2662626f20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

template<typename T, typename U>
bool check_if_equal_or_nans(const T& actual, const U& expected) {
  return ((actual == expected) || ((numext::isnan)(actual) && (numext::isnan)(expected)));
}

template<typename T, typename U>
bool check_if_equal_or_nans(const std::complex<T>& actual, const std::complex<U>& expected) {
  return check_if_equal_or_nans(numext::real(actual), numext::real(expected))
         && check_if_equal_or_nans(numext::imag(actual), numext::imag(expected));
}

template<typename T, typename U>
bool test_is_equal_or_nans(const T& actual, const U& expected)
{
    if (check_if_equal_or_nans(actual, expected)) {
      return true;
    }

    // false:
    std::cerr
        << "\n    actual   = " << actual
        << "\n    expected = " << expected << "\n\n";
    return false;
}

#define VERIFY_IS_EQUAL_OR_NANS(a, b) VERIFY(test_is_equal_or_nans(a, b))

template<typename T>
void check_abs() {
  typedef typename NumTraits<T>::Real Real;
  Real zero(0);

  if(NumTraits<T>::IsSigned)
    VERIFY_IS_EQUAL(numext::abs(-T(1)), T(1));
  VERIFY_IS_EQUAL(numext::abs(T(0)), T(0));
  VERIFY_IS_EQUAL(numext::abs(T(1)), T(1));

  for(int k=0; k<100; ++k)
  {
    T x = internal::random<T>();
    if(!internal::is_same<T,bool>::value)
      x = x/Real(2);
    if(NumTraits<T>::IsSigned)
    {
      VERIFY_IS_EQUAL(numext::abs(x), numext::abs(-x));
      VERIFY( numext::abs(-x) >= zero );
    }
    VERIFY( numext::abs(x) >= zero );
    VERIFY_IS_APPROX( numext::abs2(x), numext::abs2(numext::abs(x)) );
  }
}

template<typename T>
void check_arg() {
  typedef typename NumTraits<T>::Real Real;
  VERIFY_IS_EQUAL(numext::abs(T(0)), T(0));
  VERIFY_IS_EQUAL(numext::abs(T(1)), T(1));

  for(int k=0; k<100; ++k)
  {
    T x = internal::random<T>();
    Real y = numext::arg(x);
    VERIFY_IS_APPROX( y, std::arg(x) );
  }
}

template<typename T>
struct check_sqrt_impl {
  static void run() {
    for (int i=0; i<1000; ++i) {
      const T x = numext::abs(internal::random<T>());
      const T sqrtx = numext::sqrt(x);
      VERIFY_IS_APPROX(sqrtx*sqrtx, x);
    }

    // Corner cases.
    const T zero = T(0);
    const T one = T(1);
    const T inf = std::numeric_limits<T>::infinity();
    const T nan = std::numeric_limits<T>::quiet_NaN();
    VERIFY_IS_EQUAL(numext::sqrt(zero), zero);
    VERIFY_IS_EQUAL(numext::sqrt(inf), inf);
    VERIFY((numext::isnan)(numext::sqrt(nan)));
    VERIFY((numext::isnan)(numext::sqrt(-one)));
  }
};

template<typename T>
struct check_sqrt_impl<std::complex<T>  > {
  static void run() {
    typedef typename std::complex<T> ComplexT;

    for (int i=0; i<1000; ++i) {
      const ComplexT x = internal::random<ComplexT>();
      const ComplexT sqrtx = numext::sqrt(x);
      VERIFY_IS_APPROX(sqrtx*sqrtx, x);
    }

    // Corner cases.
    const T zero = T(0);
    const T one = T(1);
    const T inf = std::numeric_limits<T>::infinity();
    const T nan = std::numeric_limits<T>::quiet_NaN();

    // Set of corner cases from https://en.cppreference.com/w/cpp/numeric/complex/sqrt
    const int kNumCorners = 20;
    const ComplexT corners[kNumCorners][2] = {
      {ComplexT(zero, zero), ComplexT(zero, zero)},
      {ComplexT(-zero, zero), ComplexT(zero, zero)},
      {ComplexT(zero, -zero), ComplexT(zero, zero)},
      {ComplexT(-zero, -zero), ComplexT(zero, zero)},
      {ComplexT(one, inf), ComplexT(inf, inf)},
      {ComplexT(nan, inf), ComplexT(inf, inf)},
      {ComplexT(one, -inf), ComplexT(inf, -inf)},
      {ComplexT(nan, -inf), ComplexT(inf, -inf)},
      {ComplexT(-inf, one), ComplexT(zero, inf)},
      {ComplexT(inf, one), ComplexT(inf, zero)},
      {ComplexT(-inf, -one), ComplexT(zero, -inf)},
      {ComplexT(inf, -one), ComplexT(inf, -zero)},
      {ComplexT(-inf, nan), ComplexT(nan, inf)},
      {ComplexT(inf, nan), ComplexT(inf, nan)},
      {ComplexT(zero, nan), ComplexT(nan, nan)},
      {ComplexT(one, nan), ComplexT(nan, nan)},
      {ComplexT(nan, zero), ComplexT(nan, nan)},
      {ComplexT(nan, one), ComplexT(nan, nan)},
      {ComplexT(nan, -one), ComplexT(nan, nan)},
      {ComplexT(nan, nan), ComplexT(nan, nan)},
    };

    for (int i=0; i<kNumCorners; ++i) {
      const ComplexT& x = corners[i][0];
      const ComplexT sqrtx = corners[i][1];
      VERIFY_IS_EQUAL_OR_NANS(numext::sqrt(x), sqrtx);
    }
  }
};

template<typename T>
void check_sqrt() {
  check_sqrt_impl<T>::run();
}

template<typename T>
struct check_rsqrt_impl {
  static void run() {
    const T zero = T(0);
    const T one = T(1);
    const T inf = std::numeric_limits<T>::infinity();
    const T nan = std::numeric_limits<T>::quiet_NaN();

    for (int i=0; i<1000; ++i) {
      const T x = numext::abs(internal::random<T>());
      const T rsqrtx = numext::rsqrt(x);
      const T invx = one / x;
      VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx);
    }

    // Corner cases.
    VERIFY_IS_EQUAL(numext::rsqrt(zero), inf);
    VERIFY_IS_EQUAL(numext::rsqrt(inf), zero);
    VERIFY((numext::isnan)(numext::rsqrt(nan)));
    VERIFY((numext::isnan)(numext::rsqrt(-one)));
  }
};

template<typename T>
struct check_rsqrt_impl<std::complex<T> > {
  static void run() {
    typedef typename std::complex<T> ComplexT;
    const T zero = T(0);
    const T one = T(1);
    const T inf = std::numeric_limits<T>::infinity();
    const T nan = std::numeric_limits<T>::quiet_NaN();

    for (int i=0; i<1000; ++i) {
      const ComplexT x = internal::random<ComplexT>();
      const ComplexT invx = ComplexT(one, zero) / x;
      const ComplexT rsqrtx = numext::rsqrt(x);
      VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx);
    }

    // GCC and MSVC differ in their treatment of 1/(0 + 0i)
    //   GCC/clang = (inf, nan)
    //   MSVC = (nan, nan)
    // and 1 / (x + inf i)
    //   GCC/clang = (0, 0)
    //   MSVC = (nan, nan)
    #if (EIGEN_COMP_GNUC)
    {
      const int kNumCorners = 20;
      const ComplexT corners[kNumCorners][2] = {
        // Only consistent across GCC, clang
        {ComplexT(zero, zero), ComplexT(zero, zero)},
        {ComplexT(-zero, zero), ComplexT(zero, zero)},
        {ComplexT(zero, -zero), ComplexT(zero, zero)},
        {ComplexT(-zero, -zero), ComplexT(zero, zero)},
        {ComplexT(one, inf), ComplexT(inf, inf)},
        {ComplexT(nan, inf), ComplexT(inf, inf)},
        {ComplexT(one, -inf), ComplexT(inf, -inf)},
        {ComplexT(nan, -inf), ComplexT(inf, -inf)},
        // Consistent across GCC, clang, MSVC
        {ComplexT(-inf, one), ComplexT(zero, inf)},
        {ComplexT(inf, one), ComplexT(inf, zero)},
        {ComplexT(-inf, -one), ComplexT(zero, -inf)},
        {ComplexT(inf, -one), ComplexT(inf, -zero)},
        {ComplexT(-inf, nan), ComplexT(nan, inf)},
        {ComplexT(inf, nan), ComplexT(inf, nan)},
        {ComplexT(zero, nan), ComplexT(nan, nan)},
        {ComplexT(one, nan), ComplexT(nan, nan)},
        {ComplexT(nan, zero), ComplexT(nan, nan)},
        {ComplexT(nan, one), ComplexT(nan, nan)},
        {ComplexT(nan, -one), ComplexT(nan, nan)},
        {ComplexT(nan, nan), ComplexT(nan, nan)},
      };

      for (int i=0; i<kNumCorners; ++i) {
        const ComplexT& x = corners[i][0];
        const ComplexT rsqrtx = ComplexT(one, zero) / corners[i][1];
        VERIFY_IS_EQUAL_OR_NANS(numext::rsqrt(x), rsqrtx);
      }
    }
    #endif
  }
};

template<typename T>
void check_rsqrt() {
  check_rsqrt_impl<T>::run();
}

EIGEN_DECLARE_TEST(numext) {
  for(int k=0; k<g_repeat; ++k)
  {
    CALL_SUBTEST( check_abs<bool>() );
    CALL_SUBTEST( check_abs<signed char>() );
    CALL_SUBTEST( check_abs<unsigned char>() );
    CALL_SUBTEST( check_abs<short>() );
    CALL_SUBTEST( check_abs<unsigned short>() );
    CALL_SUBTEST( check_abs<int>() );
    CALL_SUBTEST( check_abs<unsigned int>() );
    CALL_SUBTEST( check_abs<long>() );
    CALL_SUBTEST( check_abs<unsigned long>() );
    CALL_SUBTEST( check_abs<half>() );
    CALL_SUBTEST( check_abs<bfloat16>() );
    CALL_SUBTEST( check_abs<float>() );
    CALL_SUBTEST( check_abs<double>() );
    CALL_SUBTEST( check_abs<long double>() );
    CALL_SUBTEST( check_abs<std::complex<float> >() );
    CALL_SUBTEST( check_abs<std::complex<double> >() );

    CALL_SUBTEST( check_arg<std::complex<float> >() );
    CALL_SUBTEST( check_arg<std::complex<double> >() );

    CALL_SUBTEST( check_sqrt<float>() );
    CALL_SUBTEST( check_sqrt<double>() );
    CALL_SUBTEST( check_sqrt<std::complex<float> >() );
    CALL_SUBTEST( check_sqrt<std::complex<double> >() );
    
    CALL_SUBTEST( check_rsqrt<float>() );
    CALL_SUBTEST( check_rsqrt<double>() );
    CALL_SUBTEST( check_rsqrt<std::complex<float> >() );
    CALL_SUBTEST( check_rsqrt<std::complex<double> >() );
  }
}