aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/nullary.cpp
blob: 9b25ea4f36b6be5b02af2f52e7268250d91862cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

template<typename MatrixType>
bool equalsIdentity(const MatrixType& A)
{
  typedef typename MatrixType::Scalar Scalar;
  Scalar zero = static_cast<Scalar>(0);

  bool offDiagOK = true;
  for (Index i = 0; i < A.rows(); ++i) {
    for (Index j = i+1; j < A.cols(); ++j) {
      offDiagOK = offDiagOK && (A(i,j) == zero);
    }
  }
  for (Index i = 0; i < A.rows(); ++i) {
    for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
      offDiagOK = offDiagOK && (A(i,j) == zero);
    }
  }

  bool diagOK = (A.diagonal().array() == 1).all();
  return offDiagOK && diagOK;

}

template<typename VectorType>
void check_extremity_accuracy(const VectorType &v, const typename VectorType::Scalar &low, const typename VectorType::Scalar &high)
{
  typedef typename VectorType::Scalar Scalar;
  typedef typename VectorType::RealScalar RealScalar;

  RealScalar prec = internal::is_same<RealScalar,float>::value ? NumTraits<RealScalar>::dummy_precision()*10 : NumTraits<RealScalar>::dummy_precision()/10;
  Index size = v.size();

  if(size<20)
    return;

  for (int i=0; i<size; ++i)
  {
    if(i<5 || i>size-6)
    {
      Scalar ref = (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1);
      if(std::abs(ref)>1)
      {
        if(!internal::isApprox(v(i), ref, prec))
          std::cout << v(i) << " != " << ref << "  ; relative error: " << std::abs((v(i)-ref)/ref) << "  ; required precision: " << prec << "  ; range: " << low << "," << high << "  ; i: " << i << "\n";
        VERIFY(internal::isApprox(v(i), (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1), prec));
      }
    }
  }
}

template<typename VectorType>
void testVectorType(const VectorType& base)
{
  typedef typename VectorType::Scalar Scalar;
  typedef typename VectorType::RealScalar RealScalar;

  const Index size = base.size();
  
  Scalar high = internal::random<Scalar>(-500,500);
  Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
  if (numext::real(low)>numext::real(high)) std::swap(low,high);

  // check low==high
  if(internal::random<float>(0.f,1.f)<0.05f)
    low = high;
  // check abs(low) >> abs(high)
  else if(size>2 && std::numeric_limits<RealScalar>::max_exponent10>0 && internal::random<float>(0.f,1.f)<0.1f)
    low = -internal::random<Scalar>(1,2) * RealScalar(std::pow(RealScalar(10),std::numeric_limits<RealScalar>::max_exponent10/2));

  const Scalar step = ((size == 1) ? 1 : (high-low)/RealScalar(size-1));

  // check whether the result yields what we expect it to do
  VectorType m(base);
  m.setLinSpaced(size,low,high);

  if(!NumTraits<Scalar>::IsInteger)
  {
    VectorType n(size);
    for (int i=0; i<size; ++i)
      n(i) = low+RealScalar(i)*step;
    VERIFY_IS_APPROX(m,n);

    CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
  }

  RealScalar range_length = numext::real(high-low);
  if((!NumTraits<Scalar>::IsInteger) || (range_length>=size && (Index(range_length)%(size-1))==0) || (Index(range_length+1)<size && (size%Index(range_length+1))==0))
  {
    VectorType n(size);
    if((!NumTraits<Scalar>::IsInteger) || (range_length>=size))
      for (int i=0; i<size; ++i)
        n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/RealScalar(size-1));
    else
      for (int i=0; i<size; ++i)
        n(i) = size==1 ? low : low + Scalar((double(range_length+1)*double(i))/double(size));
    VERIFY_IS_APPROX(m,n);

    // random access version
    m = VectorType::LinSpaced(size,low,high);
    VERIFY_IS_APPROX(m,n);
    VERIFY( internal::isApprox(m(m.size()-1),high) );
    VERIFY( size==1 || internal::isApprox(m(0),low) );
    VERIFY_IS_EQUAL(m(m.size()-1) , high);
    if(!NumTraits<Scalar>::IsInteger)
      CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
  }

  VERIFY( numext::real(m(m.size()-1)) <= numext::real(high) );
  VERIFY( (m.array().real() <= numext::real(high)).all() );
  VERIFY( (m.array().real() >= numext::real(low)).all() );


  VERIFY( numext::real(m(m.size()-1)) >= numext::real(low) );
  if(size>=1)
  {
    VERIFY( internal::isApprox(m(0),low) );
    VERIFY_IS_EQUAL(m(0) , low);
  }

  // check whether everything works with row and col major vectors
  Matrix<Scalar,Dynamic,1> row_vector(size);
  Matrix<Scalar,1,Dynamic> col_vector(size);
  row_vector.setLinSpaced(size,low,high);
  col_vector.setLinSpaced(size,low,high);
  // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
  // when computing the squared sum in isApprox, thus the 2x factor.
  VERIFY( row_vector.isApprox(col_vector.transpose(), RealScalar(2)*NumTraits<Scalar>::epsilon()));

  Matrix<Scalar,Dynamic,1> size_changer(size+50);
  size_changer.setLinSpaced(size,low,high);
  VERIFY( size_changer.size() == size );

  typedef Matrix<Scalar,1,1> ScalarMatrix;
  ScalarMatrix scalar;
  scalar.setLinSpaced(1,low,high);
  VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
  VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );

  // regression test for bug 526 (linear vectorized transversal)
  if (size > 1 && (!NumTraits<Scalar>::IsInteger)) {
    m.tail(size-1).setLinSpaced(low, high);
    VERIFY_IS_APPROX(m(size-1), high);
  }

  // regression test for bug 1383 (LinSpaced with empty size/range)
  {
    Index n0 = VectorType::SizeAtCompileTime==Dynamic ? 0 : VectorType::SizeAtCompileTime;
    low = internal::random<Scalar>();
    m = VectorType::LinSpaced(n0,low,low-RealScalar(1));
    VERIFY(m.size()==n0);

    if(VectorType::SizeAtCompileTime==Dynamic)
    {
      VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,0,Scalar(n0-1)).sum(),Scalar(0));
      VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,low,low-RealScalar(1)).sum(),Scalar(0));
    }

    m.setLinSpaced(n0,0,Scalar(n0-1));
    VERIFY(m.size()==n0);
    m.setLinSpaced(n0,low,low-RealScalar(1));
    VERIFY(m.size()==n0);

    // empty range only:
    VERIFY_IS_APPROX(VectorType::LinSpaced(size,low,low),VectorType::Constant(size,low));
    m.setLinSpaced(size,low,low);
    VERIFY_IS_APPROX(m,VectorType::Constant(size,low));

    if(NumTraits<Scalar>::IsInteger)
    {
      VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar(size-1)), VectorType::LinSpaced(size,low+Scalar(size-1),low).reverse() );

      if(VectorType::SizeAtCompileTime==Dynamic)
      {
        // Check negative multiplicator path:
        for(Index k=1; k<5; ++k)
          VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar((size-1)*k)), VectorType::LinSpaced(size,low+Scalar((size-1)*k),low).reverse() );
        // Check negative divisor path:
        for(Index k=1; k<5; ++k)
          VERIFY_IS_APPROX( VectorType::LinSpaced(size*k,low,low+Scalar(size-1)), VectorType::LinSpaced(size*k,low+Scalar(size-1),low).reverse() );
      }
    }
  }

  // test setUnit()
  if(m.size()>0)
  {
    for(Index k=0; k<10; ++k)
    {
      Index i = internal::random<Index>(0,m.size()-1);
      m.setUnit(i);
      VERIFY_IS_APPROX( m, VectorType::Unit(m.size(), i) );
    }
    if(VectorType::SizeAtCompileTime==Dynamic)
    {
      Index i = internal::random<Index>(0,2*m.size()-1);
      m.setUnit(2*m.size(),i);
      VERIFY_IS_APPROX( m, VectorType::Unit(m.size(),i) );
    }
  }

}

template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
  using std::abs;
  const Index rows = m.rows();
  const Index cols = m.cols();
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;

  Scalar s1;
  do {
    s1 = internal::random<Scalar>();
  } while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));

  MatrixType A;
  A.setIdentity(rows, cols);
  VERIFY(equalsIdentity(A));
  VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));


  A = MatrixType::Constant(rows,cols,s1);
  Index i = internal::random<Index>(0,rows-1);
  Index j = internal::random<Index>(0,cols-1);
  VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 );
  VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 );
  VERIFY_IS_APPROX( A(i,j), s1 );
}

template<int>
void bug79()
{
  // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
  VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() );
}

template<int>
void bug1630()
{
  Array4d x4 = Array4d::LinSpaced(0.0, 1.0);
  Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3));
  VERIFY_IS_APPROX(x4.head(3), x3);
}

template<int>
void nullary_overflow()
{
  // Check possible overflow issue
  int n = 60000;
  ArrayXi a1(n), a2(n);
  a1.setLinSpaced(n, 0, n-1);
  for(int i=0; i<n; ++i)
    a2(i) = i;
  VERIFY_IS_APPROX(a1,a2);
}

template<int>
void nullary_internal_logic()
{
  // check some internal logic
  VERIFY((  internal::has_nullary_operator<internal::scalar_constant_op<double> >::value ));
  VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value ));
  VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value ));
  VERIFY((  internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret ));

  VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value ));
  VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value ));
  VERIFY((  internal::has_binary_operator<internal::scalar_identity_op<double> >::value ));
  VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret ));

  VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float> >::value ));
  VERIFY((  internal::has_unary_operator<internal::linspaced_op<float> >::value ));
  VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float> >::value ));
  VERIFY((  internal::functor_has_linear_access<internal::linspaced_op<float> >::ret ));

  // Regression unit test for a weird MSVC bug.
  // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details.
  // See also traits<Ref>::match.
  {
    MatrixXf A = MatrixXf::Random(3,3);
    Ref<const MatrixXf> R = 2.0*A;
    VERIFY_IS_APPROX(R, A+A);

    Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A;

    VectorXi V = VectorXi::Random(3);
    Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V;
    VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3));

    VERIFY((  internal::has_nullary_operator<internal::scalar_constant_op<float> >::value ));
    VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<float> >::value ));
    VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value ));
    VERIFY((  internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret ));

    VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int> >::value ));
    VERIFY((  internal::has_unary_operator<internal::linspaced_op<int> >::value ));
    VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int> >::value ));
    VERIFY((  internal::functor_has_linear_access<internal::linspaced_op<int> >::ret ));
  }
}

EIGEN_DECLARE_TEST(nullary)
{
  CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
  CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
  CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
  
  for(int i = 0; i < g_repeat*10; i++) {
    CALL_SUBTEST_3( testVectorType(VectorXcd(internal::random<int>(1,30000))) );
    CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,30000))) );
    CALL_SUBTEST_5( testVectorType(Vector4d()) );  // regression test for bug 232
    CALL_SUBTEST_6( testVectorType(Vector3d()) );
    CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,30000))) );
    CALL_SUBTEST_8( testVectorType(Vector3f()) );
    CALL_SUBTEST_8( testVectorType(Vector4f()) );
    CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) );
    CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );

    CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,10))) );
    CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(9,300))) );
    CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) );
  }

  CALL_SUBTEST_6( bug79<0>() );
  CALL_SUBTEST_6( bug1630<0>() );
  CALL_SUBTEST_9( nullary_overflow<0>() );
  CALL_SUBTEST_10( nullary_internal_logic<0>() );
}