aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/nomalloc.cpp
blob: cbd02dd21d8cc9f74cef167a47da30b2fa51151a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// this hack is needed to make this file compiles with -pedantic (gcc)
#ifdef __GNUC__
#define throw(X)
#endif

#ifdef __INTEL_COMPILER
  // disable "warning #76: argument to macro is empty" produced by the above hack
  #pragma warning disable 76
#endif

// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
// any heap allocation will raise an assert
#define EIGEN_NO_MALLOC

#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/SVD>

template<typename MatrixType> void nomalloc(const MatrixType& m)
{
  /* this test check no dynamic memory allocation are issued with fixed-size matrices
  */
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;

  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols);

  Scalar s1 = internal::random<Scalar>();

  Index r = internal::random<Index>(0, rows-1),
        c = internal::random<Index>(0, cols-1);

  VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
  VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
  VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
  
  m2.col(0).noalias() = m1 * m1.col(0);
  m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
  m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
  m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();

  m2.row(0).noalias() = m1.row(0) * m1;
  m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
  VERIFY_IS_APPROX(m2,m2);
  
  m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
  m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();

  m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
  m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
  VERIFY_IS_APPROX(m2,m2);
  
  m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
  m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
  m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();

  m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
  m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
  m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
  VERIFY_IS_APPROX(m2,m2);
  
  m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
  m2.template selfadjointView<Lower>().rankUpdate(m1.row(0),-1);

  // The following fancy matrix-matrix products are not safe yet regarding static allocation
//   m1 += m1.template triangularView<Upper>() * m2.col(;
//   m1.template selfadjointView<Lower>().rankUpdate(m2);
//   m1 += m1.template triangularView<Upper>() * m2;
//   m1 += m1.template selfadjointView<Lower>() * m2;
//   VERIFY_IS_APPROX(m1,m1);
}

template<typename Scalar>
void ctms_decompositions()
{
  const int maxSize = 16;
  const int size    = 12;

  typedef Eigen::Matrix<Scalar,
                        Eigen::Dynamic, Eigen::Dynamic,
                        0,
                        maxSize, maxSize> Matrix;

  typedef Eigen::Matrix<Scalar,
                        Eigen::Dynamic, 1,
                        0,
                        maxSize, 1> Vector;

  typedef Eigen::Matrix<std::complex<Scalar>,
                        Eigen::Dynamic, Eigen::Dynamic,
                        0,
                        maxSize, maxSize> ComplexMatrix;

  const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
  Matrix X(size,size);
  const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
  const Matrix saA = A.adjoint() * A;
  const Vector b(Vector::Random(size));
  Vector x(size);

  // Cholesky module
  Eigen::LLT<Matrix>  LLT;  LLT.compute(A);
  X = LLT.solve(B);
  x = LLT.solve(b);
  Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
  X = LDLT.solve(B);
  x = LDLT.solve(b);

  // Eigenvalues module
  Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA);
  Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA);
  Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA);
  Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A);
  Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA);
  Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA);

  // LU module
  Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
  X = ppLU.solve(B);
  x = ppLU.solve(b);
  Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A);
  X = fpLU.solve(B);
  x = fpLU.solve(b);

  // QR module
  Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A);
  X = hQR.solve(B);
  x = hQR.solve(b);
  Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A);
  X = cpQR.solve(B);
  x = cpQR.solve(b);
  Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
  // FIXME X = fpQR.solve(B);
  x = fpQR.solve(b);

  // SVD module
  Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
}

void test_nomalloc()
{
  // check that our operator new is indeed called:
  VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
  CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
  CALL_SUBTEST_2(nomalloc(Matrix4d()) );
  CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
  
  // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
  CALL_SUBTEST_4(ctms_decompositions<float>());

}