aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/mixingtypes.cpp
blob: d450dbff8bbfd324e5b7b19b0329dbebef52ba45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#if defined(EIGEN_TEST_PART_7)

#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif

// ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway:
// TODO do the same for MSVC?
#if defined(__clang__)
#  if (__clang_major__ * 100 + __clang_minor__) >= 308
#    pragma clang diagnostic ignored "-Wdouble-promotion"
#  endif
#elif defined(__GNUC__)
  // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this.
#  pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif

#endif



#if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)

#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif

#endif

static bool g_called;
#define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }

#include "main.h"

using namespace std;

#define VERIFY_MIX_SCALAR(XPR,REF) \
  g_called = false; \
  VERIFY_IS_APPROX(XPR,REF); \
  VERIFY( g_called && #XPR" not properly optimized");

template<int SizeAtCompileType>
void raise_assertion(Index size = SizeAtCompileType)
{
  // VERIFY_RAISES_ASSERT(mf+md); // does not even compile
  Matrix<float, SizeAtCompileType, 1> vf; vf.setRandom(size);
  Matrix<double, SizeAtCompileType, 1> vd; vd.setRandom(size);
  VERIFY_RAISES_ASSERT(vf=vd);
  VERIFY_RAISES_ASSERT(vf+=vd);
  VERIFY_RAISES_ASSERT(vf-=vd);
  VERIFY_RAISES_ASSERT(vd=vf);
  VERIFY_RAISES_ASSERT(vd+=vf);
  VERIFY_RAISES_ASSERT(vd-=vf);

  //   vd.asDiagonal() * mf;    // does not even compile
  //   vcd.asDiagonal() * mf;   // does not even compile

#if 0 // we get other compilation errors here than just static asserts
  VERIFY_RAISES_ASSERT(vd.dot(vf));
#endif
}


template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
{
  typedef std::complex<float>   CF;
  typedef std::complex<double>  CD;
  typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
  typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
  typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
  typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;

  Mat_f mf    = Mat_f::Random(size,size);
  Mat_d md    = mf.template cast<double>();
  //Mat_d rd    = md;
  Mat_cf mcf  = Mat_cf::Random(size,size);
  Mat_cd mcd  = mcf.template cast<complex<double> >();
  Mat_cd rcd = mcd;
  Vec_f vf    = Vec_f::Random(size,1);
  Vec_d vd    = vf.template cast<double>();
  Vec_cf vcf  = Vec_cf::Random(size,1);
  Vec_cd vcd  = vcf.template cast<complex<double> >();
  float           sf  = internal::random<float>();
  double          sd  = internal::random<double>();
  complex<float>  scf = internal::random<complex<float> >();
  complex<double> scd = internal::random<complex<double> >();

  mf+mf;

  float  epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ());
  double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ());

  while(std::abs(sf )<epsf) sf  = internal::random<float>();
  while(std::abs(sd )<epsd) sd  = internal::random<double>();
  while(std::abs(scf)<epsf) scf = internal::random<CF>();
  while(std::abs(scd)<epsd) scd = internal::random<CD>();

  // check scalar products
  VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf));
  VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd);
  VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf);
  VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >());

  VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2));
  VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1));
  VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2));
  VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1));

  // check scalar quotients
  VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf));
  VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf);
  VERIFY_MIX_SCALAR(vf.array()  / scf, vf.template cast<complex<float> >().array() / scf);
  VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array());

  // check scalar increment
  VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf));
  VERIFY_MIX_SCALAR(sd  + vcd.array(), complex<double>(sd) + vcd.array());
  VERIFY_MIX_SCALAR(vf.array()  + scf, vf.template cast<complex<float> >().array() + scf);
  VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array());

  // check scalar subtractions
  VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf));
  VERIFY_MIX_SCALAR(sd  - vcd.array(), complex<double>(sd) - vcd.array());
  VERIFY_MIX_SCALAR(vf.array()  - scf, vf.template cast<complex<float> >().array() - scf);
  VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array());

  // check scalar powers
  VERIFY_MIX_SCALAR( pow(vcf.array(), sf),        Eigen::pow(vcf.array(), complex<float>(sf)) );
  VERIFY_MIX_SCALAR( vcf.array().pow(sf) ,        Eigen::pow(vcf.array(), complex<float>(sf)) );
  VERIFY_MIX_SCALAR( pow(sd, vcd.array()),        Eigen::pow(complex<double>(sd), vcd.array()) );
  VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
  VERIFY_MIX_SCALAR( vf.array().pow(scf) ,        Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
  VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) );

  // check dot product
  vf.dot(vf);
  VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));

  // check diagonal product
  VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
  VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
  VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
  VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());

  // check inner product
  VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());

  // check outer product
  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());

  // coeff wise product

  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());

  Mat_cd mcd2 = mcd;
  VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
  
  // check matrix-matrix products
  VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
  VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
  VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
  VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());

  VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
  VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
  VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
  VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());

  VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
  VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
  VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
  VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
  VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
  VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());

  VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
  VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
  VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
  VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
  VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
  VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());

  VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
  VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
  VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
  VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());

  VERIFY_IS_APPROX(sf*vcf.adjoint()*mf,  sf*vcf.adjoint()*mf.template cast<CF>().eval());
  VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
  VERIFY_IS_APPROX(sf*vf.adjoint()*mcf,  sf*vf.adjoint().template cast<CF>().eval()*mcf);
  VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);

  VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
  VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
  VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
  VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());

  VERIFY_IS_APPROX(sd*vcd.adjoint()*md,  sd*vcd.adjoint()*md.template cast<CD>().eval());
  VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
  VERIFY_IS_APPROX(sd*vd.adjoint()*mcd,  sd*vd.adjoint().template cast<CD>().eval()*mcd);
  VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);

  VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
  VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
  VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(),  sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
  VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
  VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
  VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
  VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
  VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());

  // Not supported yet: trmm
//   VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(),  sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());
//   VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>());
//   VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(),  sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>());
//   VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());

  // Not supported yet: symv
//   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
//   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
//   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>());
//   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());

  // Not supported yet: symm
//   VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(),  sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
//   VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
//   VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(),  sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
//   VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());

  rcd.setZero();
  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
                   Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
                   Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
                   Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
  VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
                   Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));


  VERIFY_IS_APPROX( md.array()  * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() );
  VERIFY_IS_APPROX( mcd.array() * md.array(),  mcd.array() * md.template cast<CD>().eval().array() );

  VERIFY_IS_APPROX( md.array()  + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() );
  VERIFY_IS_APPROX( mcd.array() + md.array(),  mcd.array() + md.template cast<CD>().eval().array() );

  VERIFY_IS_APPROX( md.array()  - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() );
  VERIFY_IS_APPROX( mcd.array() - md.array(),  mcd.array() - md.template cast<CD>().eval().array() );

  if(mcd.array().abs().minCoeff()>epsd)
  {
    VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() );
  }
  if(md.array().abs().minCoeff()>epsd)
  {
    VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() );
  }

  if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd)
  {
    VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
    VERIFY_IS_APPROX( mcd.array().pow(md.array()),  mcd.array().pow(md.template cast<CD>().eval().array()) );

    VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
    VERIFY_IS_APPROX( pow(mcd.array(),md.array()),  mcd.array().pow(md.template cast<CD>().eval().array()) );
  }

  rcd = mcd;
  VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() );
  rcd = mcd;
  VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() );
  rcd = mcd;
  VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() );
  rcd = mcd;
  VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() );
  rcd = mcd;
  if(md.array().abs().minCoeff()>epsd)
  {
    VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() );
  }

  rcd = mcd;
  VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval()));

  VERIFY_IS_APPROX( rcd.noalias()  = md*md,       ((md*md).eval().template cast<CD>()) );
  rcd = mcd;
  VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) );
  rcd = mcd;
  VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) );

  VERIFY_IS_APPROX( rcd.noalias()  = mcd + md*md,       mcd + ((md*md).eval().template cast<CD>()) );
  rcd = mcd;
  VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) );
  rcd = mcd;
  VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md,           - ((md*md).eval().template cast<CD>()) );
}

EIGEN_DECLARE_TEST(mixingtypes)
{
  g_called = false; // Silence -Wunneeded-internal-declaration.
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1(mixingtypes<3>());
    CALL_SUBTEST_2(mixingtypes<4>());
    CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));

    CALL_SUBTEST_4(mixingtypes<3>());
    CALL_SUBTEST_5(mixingtypes<4>());
    CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
    CALL_SUBTEST_7(raise_assertion<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
  }
  CALL_SUBTEST_7(raise_assertion<0>());
  CALL_SUBTEST_7(raise_assertion<3>());
  CALL_SUBTEST_7(raise_assertion<4>());
  CALL_SUBTEST_7(raise_assertion<Dynamic>(0));
}