aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/mixingtypes.cpp
blob: 0465f30592b104bd46a3c7c9c881a3209c412bc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

// work around "uninitialized" warnings and give that option some testing
#define EIGEN_INITIALIZE_MATRICES_BY_ZERO

#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif

#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types
#endif

#include "main.h"

using namespace std;

template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
{
  typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
  typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
  typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
  typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;

  Mat_f mf = Mat_f::Random(size,size);
  Mat_d md = mf.template cast<double>();
  Mat_cf mcf = Mat_cf::Random(size,size);
  Mat_cd mcd = mcf.template cast<complex<double> >();
  Vec_f vf = Vec_f::Random(size,1);
  Vec_d vd = vf.template cast<double>();
  Vec_cf vcf = Vec_cf::Random(size,1);
  Vec_cd vcd = vcf.template cast<complex<double> >();
  float           sf  = ei_random<float>();
  double          sd  = ei_random<double>();
  complex<float>  scf = ei_random<complex<float> >();
  complex<double> scd = ei_random<complex<double> >();


  mf+mf;
  VERIFY_RAISES_ASSERT(mf+md);
  VERIFY_RAISES_ASSERT(mf+mcf);
  VERIFY_RAISES_ASSERT(vf=vd);
  VERIFY_RAISES_ASSERT(vf+=vd);
  VERIFY_RAISES_ASSERT(mcd=md);

  // check scalar products
  VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf));
  VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd);
  VERIFY_IS_APPROX(vf * scf , vf.template cast<complex<float> >() * scf);
  VERIFY_IS_APPROX(scd * vd, scd * vd.template cast<complex<double> >());

  // check dot product
  vf.dot(vf);
#if 0 // we get other compilation errors here than just static asserts
  VERIFY_RAISES_ASSERT(vd.dot(vf));
#endif
  VERIFY_RAISES_ASSERT(vcf.dot(vf)); // yeah eventually we should allow this but i'm too lazy to make that change now in Dot.h
                                     // especially as that might be rewritten as cwise product .sum() which would make that automatic.

  // check diagonal product
  VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
  VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
  VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
  VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
//   vd.asDiagonal() * mf;    // does not even compile
//   vcd.asDiagonal() * mf;   // does not even compile

  // check inner product
  VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());

  // check outer product
  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());

  // coeff wise product

  VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());

  Mat_cd mcd2 = mcd;
  VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
}


void mixingtypes_large(int size)
{
  static const int SizeAtCompileType = Dynamic;
  typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
  typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
  typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
  typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;

  Mat_f mf(size,size);
  Mat_d md(size,size);
  Mat_cf mcf(size,size);
  Mat_cd mcd(size,size);
  Vec_f vf(size,1);
  Vec_d vd(size,1);
  Vec_cf vcf(size,1);
  Vec_cd vcd(size,1);

  mf*mf;
  // FIXME large products does not allow mixing types
  VERIFY_RAISES_ASSERT(md*mcd);
  VERIFY_RAISES_ASSERT(mcd*md);
  VERIFY_RAISES_ASSERT(mf*vcf);
  VERIFY_RAISES_ASSERT(mcf*vf);
//   VERIFY_RAISES_ASSERT(mcf *= mf); // does not even compile
//   VERIFY_RAISES_ASSERT(vcd = md*vcd); // does not even compile (cannot convert complex to double)
  VERIFY_RAISES_ASSERT(vcf = mcf*vf);

//   VERIFY_RAISES_ASSERT(mf*md);       // does not even compile
//   VERIFY_RAISES_ASSERT(mcf*mcd);     // does not even compile
//   VERIFY_RAISES_ASSERT(mcf*vcd);     // does not even compile
  VERIFY_RAISES_ASSERT(vcf = mf*vf);
}

template<int SizeAtCompileType> void mixingtypes_small()
{
  int size = SizeAtCompileType;
  typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
  typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
  typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
  typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
  typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
  typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;

  Mat_f mf(size,size);
  Mat_d md(size,size);
  Mat_cf mcf(size,size);
  Mat_cd mcd(size,size);
  Vec_f vf(size,1);
  Vec_d vd(size,1);
  Vec_cf vcf(size,1);
  Vec_cd vcd(size,1);


  mf*mf;
  // FIXME shall we discard those products ?
  // 1) currently they work only if SizeAtCompileType is small enough
  // 2) in case we vectorize complexes this might be difficult to still allow that
  md*mcd;
  mcd*md;
  mf*vcf;
  mcf*vf;
  mcf *= mf;
  vcd = md*vcd;
  vcf = mcf*vf;
//   VERIFY_RAISES_ASSERT(mf*md);   // does not even compile
//   VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile
//   VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile
  VERIFY_RAISES_ASSERT(vcf = mf*vf);
}

void test_mixingtypes()
{
  // check that our operator new is indeed called:
  CALL_SUBTEST_1(mixingtypes<3>());
  CALL_SUBTEST_2(mixingtypes<4>());
  CALL_SUBTEST_3(mixingtypes<Dynamic>(20));

  CALL_SUBTEST_4(mixingtypes_small<4>());
  CALL_SUBTEST_5(mixingtypes_large(20));
}