1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// work around "uninitialized" warnings and give that option some testing
#define EIGEN_INITIALIZE_MATRICES_BY_ZERO
#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif
// #ifndef EIGEN_DONT_VECTORIZE
// #define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types
// #endif
#include "main.h"
using namespace std;
template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
{
typedef std::complex<float> CF;
typedef std::complex<double> CD;
typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
Mat_f mf = Mat_f::Random(size,size);
Mat_d md = mf.template cast<double>();
Mat_cf mcf = Mat_cf::Random(size,size);
Mat_cd mcd = mcf.template cast<complex<double> >();
Vec_f vf = Vec_f::Random(size,1);
Vec_d vd = vf.template cast<double>();
Vec_cf vcf = Vec_cf::Random(size,1);
Vec_cd vcd = vcf.template cast<complex<double> >();
float sf = internal::random<float>();
double sd = internal::random<double>();
complex<float> scf = internal::random<complex<float> >();
complex<double> scd = internal::random<complex<double> >();
mf+mf;
VERIFY_RAISES_ASSERT(mf+md);
VERIFY_RAISES_ASSERT(mf+mcf);
#ifndef EIGEN_TEST_EVALUATORS
// they do not even compile when using evaluators
VERIFY_RAISES_ASSERT(vf=vd);
VERIFY_RAISES_ASSERT(vf+=vd);
VERIFY_RAISES_ASSERT(mcd=md);
#endif
// check scalar products
VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf));
VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd);
VERIFY_IS_APPROX(vf * scf , vf.template cast<complex<float> >() * scf);
VERIFY_IS_APPROX(scd * vd, scd * vd.template cast<complex<double> >());
// check dot product
vf.dot(vf);
#if 0 // we get other compilation errors here than just static asserts
VERIFY_RAISES_ASSERT(vd.dot(vf));
#endif
VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
// check diagonal product
VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
// vd.asDiagonal() * mf; // does not even compile
// vcd.asDiagonal() * mf; // does not even compile
// check inner product
VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
// check outer product
VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
// coeff wise product
VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
Mat_cd mcd2 = mcd;
VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
// check matrix-matrix products
VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());
VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());
VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval());
VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf);
VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval());
VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd);
VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
}
void test_mixingtypes()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(mixingtypes<3>());
CALL_SUBTEST_2(mixingtypes<4>());
CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
}
}
|