aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/mapped_matrix.cpp
blob: 88653e887c9c4c2a845f77836c54d63a885ca814 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif

#include "main.h"

#define EIGEN_TESTMAP_MAX_SIZE 256

template<typename VectorType> void map_class_vector(const VectorType& m)
{
  typedef typename VectorType::Index Index;
  typedef typename VectorType::Scalar Scalar;

  Index size = m.size();

  Scalar* array1 = internal::aligned_new<Scalar>(size);
  Scalar* array2 = internal::aligned_new<Scalar>(size);
  Scalar* array3 = new Scalar[size+1];
  Scalar* array3unaligned = (std::size_t(array3)%EIGEN_MAX_ALIGN_BYTES) == 0 ? array3+1 : array3;
  Scalar  array4[EIGEN_TESTMAP_MAX_SIZE];

  Map<VectorType, AlignedMax>(array1, size) = VectorType::Random(size);
  Map<VectorType, AlignedMax>(array2, size) = Map<VectorType,AlignedMax>(array1, size);
  Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size);
  Map<VectorType>(array4, size)          = Map<VectorType,AlignedMax>(array1, size);
  VectorType ma1 = Map<VectorType, AlignedMax>(array1, size);
  VectorType ma2 = Map<VectorType, AlignedMax>(array2, size);
  VectorType ma3 = Map<VectorType>(array3unaligned, size);
  VectorType ma4 = Map<VectorType>(array4, size);
  VERIFY_IS_EQUAL(ma1, ma2);
  VERIFY_IS_EQUAL(ma1, ma3);
  VERIFY_IS_EQUAL(ma1, ma4);
  #ifdef EIGEN_VECTORIZE
  if(internal::packet_traits<Scalar>::Vectorizable && size>=AlignedMax)
    VERIFY_RAISES_ASSERT((Map<VectorType,AlignedMax>(array3unaligned, size)))
  #endif

  internal::aligned_delete(array1, size);
  internal::aligned_delete(array2, size);
  delete[] array3;
}

template<typename MatrixType> void map_class_matrix(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;

  Index rows = m.rows(), cols = m.cols(), size = rows*cols;
  Scalar s1 = internal::random<Scalar>();

  // array1 and array2 -> aligned heap allocation
  Scalar* array1 = internal::aligned_new<Scalar>(size);
  for(int i = 0; i < size; i++) array1[i] = Scalar(1);
  Scalar* array2 = internal::aligned_new<Scalar>(size);
  for(int i = 0; i < size; i++) array2[i] = Scalar(1);
  // array3unaligned -> unaligned pointer to heap
  Scalar* array3 = new Scalar[size+1];
  for(int i = 0; i < size+1; i++) array3[i] = Scalar(1);
  Scalar* array3unaligned = size_t(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3;
  Scalar array4[256];
  if(size<=256)
    for(int i = 0; i < size; i++) array4[i] = Scalar(1);
  
  Map<MatrixType> map1(array1, rows, cols);
  Map<MatrixType, AlignedMax> map2(array2, rows, cols);
  Map<MatrixType> map3(array3unaligned, rows, cols);
  Map<MatrixType> map4(array4, rows, cols);
  
  VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows,cols));
  VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows,cols));
  VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows,cols));
  map1 = MatrixType::Random(rows,cols);
  map2 = map1;
  map3 = map1;
  MatrixType ma1 = map1;
  MatrixType ma2 = map2;
  MatrixType ma3 = map3;
  VERIFY_IS_EQUAL(map1, map2);
  VERIFY_IS_EQUAL(map1, map3);
  VERIFY_IS_EQUAL(ma1, ma2);
  VERIFY_IS_EQUAL(ma1, ma3);
  VERIFY_IS_EQUAL(ma1, map3);
  
  VERIFY_IS_APPROX(s1*map1, s1*map2);
  VERIFY_IS_APPROX(s1*ma1, s1*ma2);
  VERIFY_IS_EQUAL(s1*ma1, s1*ma3);
  VERIFY_IS_APPROX(s1*map1, s1*map3);
  
  map2 *= s1;
  map3 *= s1;
  VERIFY_IS_APPROX(s1*map1, map2);
  VERIFY_IS_APPROX(s1*map1, map3);
  
  if(size<=256)
  {
    VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows,cols));
    map4 = map1;
    MatrixType ma4 = map4;
    VERIFY_IS_EQUAL(map1, map4);
    VERIFY_IS_EQUAL(ma1, map4);
    VERIFY_IS_EQUAL(ma1, ma4);
    VERIFY_IS_APPROX(s1*map1, s1*map4);
    
    map4 *= s1;
    VERIFY_IS_APPROX(s1*map1, map4);
  }

  internal::aligned_delete(array1, size);
  internal::aligned_delete(array2, size);
  delete[] array3;
}

template<typename VectorType> void map_static_methods(const VectorType& m)
{
  typedef typename VectorType::Index Index;
  typedef typename VectorType::Scalar Scalar;

  Index size = m.size();

  Scalar* array1 = internal::aligned_new<Scalar>(size);
  Scalar* array2 = internal::aligned_new<Scalar>(size);
  Scalar* array3 = new Scalar[size+1];
  Scalar* array3unaligned = size_t(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3;

  VectorType::MapAligned(array1, size) = VectorType::Random(size);
  VectorType::Map(array2, size) = VectorType::Map(array1, size);
  VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size);
  VectorType ma1 = VectorType::Map(array1, size);
  VectorType ma2 = VectorType::MapAligned(array2, size);
  VectorType ma3 = VectorType::Map(array3unaligned, size);
  VERIFY_IS_EQUAL(ma1, ma2);
  VERIFY_IS_EQUAL(ma1, ma3);

  internal::aligned_delete(array1, size);
  internal::aligned_delete(array2, size);
  delete[] array3;
}

template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
{
  // there's a lot that we can't test here while still having this test compile!
  // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
  // CMake can help with that.

  // verify that map-to-const don't have LvalueBit
  typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
  VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
  VERIFY( !(internal::traits<Map<ConstPlainObjectType, AlignedMax> >::Flags & LvalueBit) );
  VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
  VERIFY( !(Map<ConstPlainObjectType, AlignedMax>::Flags & LvalueBit) );
}

template<typename Scalar>
void map_not_aligned_on_scalar()
{
  typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
  typedef typename MatrixType::Index Index;
  Index size = 11;
  Scalar* array1 = internal::aligned_new<Scalar>((size+1)*(size+1)+1);
  Scalar* array2 = reinterpret_cast<Scalar*>(sizeof(Scalar)/2+std::size_t(array1));
  Map<MatrixType,0,OuterStride<> > map2(array2, size, size, OuterStride<>(size+1));
  MatrixType m2 = MatrixType::Random(size,size);
  map2 = m2;
  VERIFY_IS_EQUAL(m2, map2);
  
  typedef Matrix<Scalar,Dynamic,1> VectorType;
  Map<VectorType> map3(array2, size);
  MatrixType v3 = VectorType::Random(size);
  map3 = v3;
  VERIFY_IS_EQUAL(v3, map3);
  
  internal::aligned_delete(array1, (size+1)*(size+1)+1);
}

void test_mapped_matrix()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( map_class_vector(Vector4d()) );
    CALL_SUBTEST_2( map_class_vector(VectorXd(13)) );
    CALL_SUBTEST_2( check_const_correctness(Matrix4d()) );
    CALL_SUBTEST_3( map_class_vector(RowVector4f()) );
    CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) );
    CALL_SUBTEST_5( map_class_vector(VectorXi(12)) );
    CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );

    CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( map_class_matrix(Matrix4d()) );
    CALL_SUBTEST_11( map_class_matrix(Matrix<float,3,5>()) );
    CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) );
    CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );

    CALL_SUBTEST_6( map_static_methods(Matrix<double, 1, 1>()) );
    CALL_SUBTEST_7( map_static_methods(Vector3f()) );
    CALL_SUBTEST_8( map_static_methods(RowVector3d()) );
    CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) );
    CALL_SUBTEST_10( map_static_methods(VectorXf(12)) );
    
    CALL_SUBTEST_11( map_not_aligned_on_scalar<double>() );
  }
}