1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/LU>
template<typename Derived>
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
{
typedef typename Derived::RealScalar RealScalar;
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
{
RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
int j;
do {
j = Eigen::ei_random<int>(0,m.rows()-1);
} while (i==j); // j is another one (must be different)
m.row(i) += d * m.row(j);
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
do {
j = Eigen::ei_random<int>(0,m.cols()-1);
} while (i==j); // j is another one (must be different)
m.col(i) += d * m.col(j);
}
}
template<typename MatrixType> void lu_non_invertible()
{
/* this test covers the following files:
LU.h
*/
// NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
int rank = ei_random<int>(1, std::min(rows, cols)-1);
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
m1 = MatrixType::Random(rows,cols);
if(rows <= cols)
for(int i = rank; i < rows; i++) m1.row(i).setZero();
else
for(int i = rank; i < cols; i++) m1.col(i).setZero();
doSomeRankPreservingOperations(m1);
LU<MatrixType> lu(m1);
typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
typename LU<MatrixType>::ImageResultType m1image = lu.image();
VERIFY(rank == lu.rank());
VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
VERIFY(!lu.isInjective());
VERIFY(!lu.isInvertible());
VERIFY(lu.isSurjective() == (lu.rank() == rows));
VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
VERIFY(m1image.lu().rank() == rank);
MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
sidebyside << m1, m1image;
VERIFY(sidebyside.lu().rank() == rank);
m2 = MatrixType::Random(cols,cols2);
m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
lu.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
m3 = MatrixType::Random(rows,cols2);
VERIFY(!lu.solve(m3, &m2));
}
template<typename MatrixType> void lu_invertible()
{
/* this test covers the following files:
LU.h
*/
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
int size = ei_random<int>(10,200);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (ei_is_same_type<RealScalar,float>::ret)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
LU<MatrixType> lu(m1);
VERIFY(0 == lu.dimensionOfKernel());
VERIFY(size == lu.rank());
VERIFY(lu.isInjective());
VERIFY(lu.isSurjective());
VERIFY(lu.isInvertible());
VERIFY(lu.image().lu().isInvertible());
m3 = MatrixType::Random(size,size);
lu.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
m3 = MatrixType::Random(size,size);
VERIFY(lu.solve(m3, &m2));
}
void test_lu()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( lu_non_invertible<MatrixXf>() );
CALL_SUBTEST( lu_non_invertible<MatrixXd>() );
CALL_SUBTEST( lu_non_invertible<MatrixXcf>() );
CALL_SUBTEST( lu_non_invertible<MatrixXcd>() );
CALL_SUBTEST( lu_invertible<MatrixXf>() );
CALL_SUBTEST( lu_invertible<MatrixXd>() );
CALL_SUBTEST( lu_invertible<MatrixXcf>() );
CALL_SUBTEST( lu_invertible<MatrixXcd>() );
}
}
|