aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/lu.cpp
blob: 4ad92bb119be30a45d92952ee6172558e4503b10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/LU>

template<typename MatrixType> void lu_non_invertible()
{
  /* this test covers the following files:
     LU.h
  */
  int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
  int rank = ei_random<int>(1, std::min(rows, cols)-1);

  MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
  createRandomMatrixOfRank(rank, rows, cols, m1);

  LU<MatrixType> lu(m1);
  typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
  typename LU<MatrixType>::ImageResultType m1image = lu.image();

  VERIFY(rank == lu.rank());
  VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
  VERIFY(!lu.isInjective());
  VERIFY(!lu.isInvertible());
  VERIFY(lu.isSurjective() == (lu.rank() == rows));
  VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
  VERIFY(m1image.lu().rank() == rank);
  MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
  sidebyside << m1, m1image;
  VERIFY(sidebyside.lu().rank() == rank);
  m2 = MatrixType::Random(cols,cols2);
  m3 = m1*m2;
  m2 = MatrixType::Random(cols,cols2);
  lu.solve(m3, &m2);
  VERIFY_IS_APPROX(m3, m1*m2);
  m3 = MatrixType::Random(rows,cols2);
  VERIFY(!lu.solve(m3, &m2));
  
  typedef Matrix<typename MatrixType::Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  SquareMatrixType m4(rows, rows), m5(rows, rows);
  createRandomMatrixOfRank(rows/2, rows, rows, m4);
  VERIFY(!m4.computeInverseWithCheck(&m5));
}

template<typename MatrixType> void lu_invertible()
{
  /* this test covers the following files:
     LU.h
  */
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  int size = ei_random<int>(10,200);

  MatrixType m1(size, size), m2(size, size), m3(size, size);
  m1 = MatrixType::Random(size,size);

  if (ei_is_same_type<RealScalar,float>::ret)
  {
    // let's build a matrix more stable to inverse
    MatrixType a = MatrixType::Random(size,size*2);
    m1 += a * a.adjoint();
  }

  LU<MatrixType> lu(m1);
  VERIFY(0 == lu.dimensionOfKernel());
  VERIFY(size == lu.rank());
  VERIFY(lu.isInjective());
  VERIFY(lu.isSurjective());
  VERIFY(lu.isInvertible());
  VERIFY(lu.image().lu().isInvertible());
  m3 = MatrixType::Random(size,size);
  lu.solve(m3, &m2);
  VERIFY_IS_APPROX(m3, m1*m2);
  VERIFY_IS_APPROX(m2, lu.inverse()*m3);
  m3 = MatrixType::Random(size,size);
  VERIFY(lu.solve(m3, &m2));
}

template<typename MatrixType> void lu_verify_assert()
{
  MatrixType tmp;

  LU<MatrixType> lu;
  VERIFY_RAISES_ASSERT(lu.matrixLU())
  VERIFY_RAISES_ASSERT(lu.permutationP())
  VERIFY_RAISES_ASSERT(lu.permutationQ())
  VERIFY_RAISES_ASSERT(lu.computeKernel(&tmp))
  VERIFY_RAISES_ASSERT(lu.computeImage(&tmp))
  VERIFY_RAISES_ASSERT(lu.kernel())
  VERIFY_RAISES_ASSERT(lu.image())
  VERIFY_RAISES_ASSERT(lu.solve(tmp,&tmp))
  VERIFY_RAISES_ASSERT(lu.determinant())
  VERIFY_RAISES_ASSERT(lu.rank())
  VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
  VERIFY_RAISES_ASSERT(lu.isInjective())
  VERIFY_RAISES_ASSERT(lu.isSurjective())
  VERIFY_RAISES_ASSERT(lu.isInvertible())
  VERIFY_RAISES_ASSERT(lu.computeInverse(&tmp))
  VERIFY_RAISES_ASSERT(lu.inverse())

  PartialLU<MatrixType> plu;
  VERIFY_RAISES_ASSERT(plu.matrixLU())
  VERIFY_RAISES_ASSERT(plu.permutationP())
  VERIFY_RAISES_ASSERT(plu.solve(tmp,&tmp))
  VERIFY_RAISES_ASSERT(plu.determinant())
  VERIFY_RAISES_ASSERT(plu.computeInverse(&tmp))
  VERIFY_RAISES_ASSERT(plu.inverse())
}

void test_lu()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( lu_non_invertible<MatrixXf>() );
    CALL_SUBTEST( lu_non_invertible<MatrixXd>() );
    CALL_SUBTEST( lu_non_invertible<MatrixXcf>() );
    CALL_SUBTEST( lu_non_invertible<MatrixXcd>() );
    CALL_SUBTEST( lu_invertible<MatrixXf>() );
    CALL_SUBTEST( lu_invertible<MatrixXd>() );
    CALL_SUBTEST( lu_invertible<MatrixXcf>() );
    CALL_SUBTEST( lu_invertible<MatrixXcd>() );
  }

  CALL_SUBTEST( lu_verify_assert<Matrix3f>() );
  CALL_SUBTEST( lu_verify_assert<Matrix3d>() );
  CALL_SUBTEST( lu_verify_assert<MatrixXf>() );
  CALL_SUBTEST( lu_verify_assert<MatrixXd>() );
  CALL_SUBTEST( lu_verify_assert<MatrixXcf>() );
  CALL_SUBTEST( lu_verify_assert<MatrixXcd>() );
}