aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/lu.cpp
blob: 1bbadcbf0ff6b65479cba01849503f7c7dc33117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/LU>
#include "solverbase.h"
using namespace std;

template<typename MatrixType>
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
  return m.cwiseAbs().colwise().sum().maxCoeff();
}

template<typename MatrixType> void lu_non_invertible()
{
  STATIC_CHECK(( internal::is_same<typename FullPivLU<MatrixType>::StorageIndex,int>::value ));

  typedef typename MatrixType::RealScalar RealScalar;
  /* this test covers the following files:
     LU.h
  */
  Index rows, cols, cols2;
  if(MatrixType::RowsAtCompileTime==Dynamic)
  {
    rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
  }
  else
  {
    rows = MatrixType::RowsAtCompileTime;
  }
  if(MatrixType::ColsAtCompileTime==Dynamic)
  {
    cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
    cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
  }
  else
  {
    cols2 = cols = MatrixType::ColsAtCompileTime;
  }

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };
  typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
  typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
  typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
          CMatrixType;
  typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
          RMatrixType;

  Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);

  // The image of the zero matrix should consist of a single (zero) column vector
  VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));

  // The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols.
  KernelMatrixType kernel = MatrixType::Zero(rows,cols).fullPivLu().kernel();
  VERIFY((kernel.fullPivLu().isInvertible()));

  MatrixType m1(rows, cols), m3(rows, cols2);
  CMatrixType m2(cols, cols2);
  createRandomPIMatrixOfRank(rank, rows, cols, m1);

  FullPivLU<MatrixType> lu;

  // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
  // of singular values are either 0 or 1.
  // So it's not clear at all that the epsilon should play any role there.
  lu.setThreshold(RealScalar(0.01));
  lu.compute(m1);

  MatrixType u(rows,cols);
  u = lu.matrixLU().template triangularView<Upper>();
  RMatrixType l = RMatrixType::Identity(rows,rows);
  l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
    = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));

  VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);

  KernelMatrixType m1kernel = lu.kernel();
  ImageMatrixType m1image = lu.image(m1);

  VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
  VERIFY(rank == lu.rank());
  VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
  VERIFY(!lu.isInjective());
  VERIFY(!lu.isInvertible());
  VERIFY(!lu.isSurjective());
  VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1);
  VERIFY(m1image.fullPivLu().rank() == rank);
  VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);

  check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2);

  m2 = CMatrixType::Random(cols,cols2);
  m3 = m1*m2;
  m2 = CMatrixType::Random(cols,cols2);
  // test that the code, which does resize(), may be applied to an xpr
  m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
  VERIFY_IS_APPROX(m3, m1*m2);
}

template<typename MatrixType> void lu_invertible()
{
  /* this test covers the following files:
     FullPivLU.h
  */
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  Index size = MatrixType::RowsAtCompileTime;
  if( size==Dynamic)
    size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);

  MatrixType m1(size, size), m2(size, size), m3(size, size);
  FullPivLU<MatrixType> lu;
  lu.setThreshold(RealScalar(0.01));
  do {
    m1 = MatrixType::Random(size,size);
    lu.compute(m1);
  } while(!lu.isInvertible());

  VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
  VERIFY(0 == lu.dimensionOfKernel());
  VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
  VERIFY(size == lu.rank());
  VERIFY(lu.isInjective());
  VERIFY(lu.isSurjective());
  VERIFY(lu.isInvertible());
  VERIFY(lu.image(m1).fullPivLu().isInvertible());

  check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size);

  MatrixType m1_inverse = lu.inverse();
  m3 = MatrixType::Random(size,size);
  m2 = lu.solve(m3);
  VERIFY_IS_APPROX(m2, m1_inverse*m3);

  RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
  const RealScalar rcond_est = lu.rcond();
  // Verify that the estimated condition number is within a factor of 10 of the
  // truth.
  VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);

  // Regression test for Bug 302
  MatrixType m4 = MatrixType::Random(size,size);
  VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
}

template<typename MatrixType> void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime)
{
  /* this test covers the following files:
     PartialPivLU.h
  */
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;

  MatrixType m1(size, size), m2(size, size), m3(size, size);
  m1.setRandom();
  PartialPivLU<MatrixType> plu(m1);

  STATIC_CHECK(( internal::is_same<typename PartialPivLU<MatrixType>::StorageIndex,int>::value ));

  VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());

  check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size);

  MatrixType m1_inverse = plu.inverse();
  m3 = MatrixType::Random(size,size);
  m2 = plu.solve(m3);
  VERIFY_IS_APPROX(m2, m1_inverse*m3);

  RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
  const RealScalar rcond_est = plu.rcond();
  // Verify that the estimate is within a factor of 10 of the truth.
  VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
}

template<typename MatrixType> void lu_verify_assert()
{
  MatrixType tmp;

  FullPivLU<MatrixType> lu;
  VERIFY_RAISES_ASSERT(lu.matrixLU())
  VERIFY_RAISES_ASSERT(lu.permutationP())
  VERIFY_RAISES_ASSERT(lu.permutationQ())
  VERIFY_RAISES_ASSERT(lu.kernel())
  VERIFY_RAISES_ASSERT(lu.image(tmp))
  VERIFY_RAISES_ASSERT(lu.solve(tmp))
  VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp))
  VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp))
  VERIFY_RAISES_ASSERT(lu.determinant())
  VERIFY_RAISES_ASSERT(lu.rank())
  VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
  VERIFY_RAISES_ASSERT(lu.isInjective())
  VERIFY_RAISES_ASSERT(lu.isSurjective())
  VERIFY_RAISES_ASSERT(lu.isInvertible())
  VERIFY_RAISES_ASSERT(lu.inverse())

  PartialPivLU<MatrixType> plu;
  VERIFY_RAISES_ASSERT(plu.matrixLU())
  VERIFY_RAISES_ASSERT(plu.permutationP())
  VERIFY_RAISES_ASSERT(plu.solve(tmp))
  VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp))
  VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp))
  VERIFY_RAISES_ASSERT(plu.determinant())
  VERIFY_RAISES_ASSERT(plu.inverse())
}

EIGEN_DECLARE_TEST(lu)
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
    CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
    CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
    CALL_SUBTEST_1( lu_partial_piv<Matrix3f>() );

    CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
    CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
    CALL_SUBTEST_2( lu_partial_piv<Matrix2d>() );
    CALL_SUBTEST_2( lu_partial_piv<Matrix4d>() );
    CALL_SUBTEST_2( (lu_partial_piv<Matrix<double,6,6> >()) );

    CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
    CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
    CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );

    CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
    CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
    CALL_SUBTEST_4( lu_partial_piv<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
    CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );

    CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
    CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
    CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );

    CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
    CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
    CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
    CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );

    CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));

    // Test problem size constructors
    CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
    CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
  }
}