aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/linearstructure.cpp
blob: 46ee5162b84049103500e2997814923f5bfa0243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

static bool g_called;
#define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }

#include "main.h"

template<typename MatrixType> void linearStructure(const MatrixType& m)
{
  using std::abs;
  /* this test covers the following files:
     CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h 
  */
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;

  Index rows = m.rows();
  Index cols = m.cols();

  // this test relies a lot on Random.h, and there's not much more that we can do
  // to test it, hence I consider that we will have tested Random.h
  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols);

  Scalar s1 = internal::random<Scalar>();
  while (abs(s1)<RealScalar(1e-3)) s1 = internal::random<Scalar>();

  Index r = internal::random<Index>(0, rows-1),
        c = internal::random<Index>(0, cols-1);

  VERIFY_IS_APPROX(-(-m1),                  m1);
  VERIFY_IS_APPROX(m1+m1,                   2*m1);
  VERIFY_IS_APPROX(m1+m2-m1,                m2);
  VERIFY_IS_APPROX(-m2+m1+m2,               m1);
  VERIFY_IS_APPROX(m1*s1,                   s1*m1);
  VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
  VERIFY_IS_APPROX((-m1+m2)*s1,             -s1*m1+s1*m2);
  m3 = m2; m3 += m1;
  VERIFY_IS_APPROX(m3,                      m1+m2);
  m3 = m2; m3 -= m1;
  VERIFY_IS_APPROX(m3,                      m2-m1);
  m3 = m2; m3 *= s1;
  VERIFY_IS_APPROX(m3,                      s1*m2);
  if(!NumTraits<Scalar>::IsInteger)
  {
    m3 = m2; m3 /= s1;
    VERIFY_IS_APPROX(m3,                    m2/s1);
  }

  // again, test operator() to check const-qualification
  VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
  VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
  VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
  VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
  VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
  if(!NumTraits<Scalar>::IsInteger)
    VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);

  // use .block to disable vectorization and compare to the vectorized version
  VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
  VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
  VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
  VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
}

// Make sure that complex * real and real * complex are properly optimized
template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  
  RealScalar s = internal::random<RealScalar>();
  MatrixType m1 = MatrixType::Random(rows, cols);
  
  g_called = false;
  VERIFY_IS_APPROX(s*m1, Scalar(s)*m1);
  VERIFY(g_called && "real * matrix<complex> not properly optimized");
  
  g_called = false;
  VERIFY_IS_APPROX(m1*s, m1*Scalar(s));
  VERIFY(g_called && "matrix<complex> * real not properly optimized");
  
  g_called = false;
  VERIFY_IS_APPROX(m1/s, m1/Scalar(s));
  VERIFY(g_called && "matrix<complex> / real not properly optimized");

  g_called = false;
  VERIFY_IS_APPROX(s+m1.array(), Scalar(s)+m1.array());
  VERIFY(g_called && "real + matrix<complex> not properly optimized");

  g_called = false;
  VERIFY_IS_APPROX(m1.array()+s, m1.array()+Scalar(s));
  VERIFY(g_called && "matrix<complex> + real not properly optimized");

  g_called = false;
  VERIFY_IS_APPROX(s-m1.array(), Scalar(s)-m1.array());
  VERIFY(g_called && "real - matrix<complex> not properly optimized");

  g_called = false;
  VERIFY_IS_APPROX(m1.array()-s, m1.array()-Scalar(s));
  VERIFY(g_called && "matrix<complex> - real not properly optimized");
}

template<int>
void linearstructure_overflow()
{
  // make sure that /=scalar and /scalar do not overflow
  // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
  Matrix4d m2, m3;
  m3 = m2 =  Matrix4d::Random()*1e-20;
  m2 = m2 / 4.9e-320;
  VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
  m3 /= 4.9e-320;
  VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
}

EIGEN_DECLARE_TEST(linearstructure)
{
  g_called = true;
  VERIFY(g_called); // avoid `unneeded-internal-declaration` warning.
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( linearStructure(Matrix2f()) );
    CALL_SUBTEST_3( linearStructure(Vector3d()) );
    CALL_SUBTEST_4( linearStructure(Matrix4d()) );
    CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_10( linearStructure(ArrayXXcf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    
    CALL_SUBTEST_11( real_complex<Matrix4cd>() );
    CALL_SUBTEST_11( real_complex<MatrixXcf>(10,10) );
    CALL_SUBTEST_11( real_complex<ArrayXXcf>(10,10) );
  }
  CALL_SUBTEST_4( linearstructure_overflow<0>() );
}