aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/inverse.cpp
blob: 54dab489d70ff9e7f211bcab096538d9307c0f0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/LU>

template<typename MatrixType> void inverse(const MatrixType& m)
{
  /* this test covers the following files:
     Inverse.h
  */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2(rows, cols),
             mzero = MatrixType::Zero(rows, cols),
             identity = MatrixType::Identity(rows, rows);

  if (ei_is_same_type<RealScalar,float>::ret)
  {
    // let's build a more stable to inverse matrix
    MatrixType a = MatrixType::Random(rows,cols);
    m1 += m1 * m1.adjoint() + a * a.adjoint();
  }

  m2 = m1.inverse();
  VERIFY_IS_APPROX(m1, m2.inverse() );

  m1.computeInverse(&m2);
  VERIFY_IS_APPROX(m1, m2.inverse() );

  VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));

  VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
  VERIFY_IS_APPROX(identity, m1 * m1.inverse() );

  VERIFY_IS_APPROX(m1, m1.inverse().inverse() );

  // since for the general case we implement separately row-major and col-major, test that
  VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose());
}

void test_inverse()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( inverse(Matrix<double,1,1>()) );
    CALL_SUBTEST( inverse(Matrix2d()) );
    CALL_SUBTEST( inverse(Matrix3f()) );
    CALL_SUBTEST( inverse(Matrix4f()) );
    CALL_SUBTEST( inverse(MatrixXf(8,8)) );
    CALL_SUBTEST( inverse(MatrixXcd(7,7)) );
  }
}