aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/householder.cpp
blob: 8031025e54490889f43f94bde5d4237ff018b47d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/QR>

template<typename MatrixType> void householder(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  static bool even = true;
  even = !even;
  /* this test covers the following files:
     Householder.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
  typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;

  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> RightSquareMatrixType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic> VBlockMatrixType;
  typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
  
  Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp(std::max(rows,cols));
  Scalar* tmp = &_tmp.coeffRef(0,0);

  Scalar beta;
  RealScalar alpha;
  EssentialVectorType essential;

  VectorType v1 = VectorType::Random(rows), v2;
  v2 = v1;
  v1.makeHouseholder(essential, beta, alpha);
  v1.applyHouseholderOnTheLeft(essential,beta,tmp);
  VERIFY_IS_APPROX(v1.norm(), v2.norm());
  if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm());
  v1 = VectorType::Random(rows);
  v2 = v1;
  v1.applyHouseholderOnTheLeft(essential,beta,tmp);
  VERIFY_IS_APPROX(v1.norm(), v2.norm());

  MatrixType m1(rows, cols),
             m2(rows, cols);

  v1 = VectorType::Random(rows);
  if(even) v1.tail(rows-1).setZero();
  m1.colwise() = v1;
  m2 = m1;
  m1.col(0).makeHouseholder(essential, beta, alpha);
  m1.applyHouseholderOnTheLeft(essential,beta,tmp);
  VERIFY_IS_APPROX(m1.norm(), m2.norm());
  if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm());
  VERIFY_IS_MUCH_SMALLER_THAN(internal::imag(m1(0,0)), internal::real(m1(0,0)));
  VERIFY_IS_APPROX(internal::real(m1(0,0)), alpha);

  v1 = VectorType::Random(rows);
  if(even) v1.tail(rows-1).setZero();
  SquareMatrixType m3(rows,rows), m4(rows,rows);
  m3.rowwise() = v1.transpose();
  m4 = m3;
  m3.row(0).makeHouseholder(essential, beta, alpha);
  m3.applyHouseholderOnTheRight(essential,beta,tmp);
  VERIFY_IS_APPROX(m3.norm(), m4.norm());
  if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm());
  VERIFY_IS_MUCH_SMALLER_THAN(internal::imag(m3(0,0)), internal::real(m3(0,0)));
  VERIFY_IS_APPROX(internal::real(m3(0,0)), alpha);

  // test householder sequence on the left with a shift

  Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0));
  Index brows = rows - shift;
  m1.setRandom(rows, cols);
  HBlockMatrixType hbm = m1.block(shift,0,brows,cols);
  HouseholderQR<HBlockMatrixType> qr(hbm);
  m2 = m1;
  m2.block(shift,0,brows,cols) = qr.matrixQR();
  HCoeffsVectorType hc = qr.hCoeffs().conjugate();
  HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
  hseq.setLength(hc.size()).setShift(shift);
  VERIFY(hseq.length() == hc.size());
  VERIFY(hseq.shift() == shift);

  MatrixType m5 = m2;
  m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero();
  VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
  m3 = hseq;
  VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying

  // test householder sequence on the right with a shift

  TMatrixType tm2 = m2.transpose();
  HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
  rhseq.setLength(hc.size()).setShift(shift);
  VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
  m3 = rhseq;
  VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
}

void test_householder()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( householder(Matrix<double,2,2>()) );
    CALL_SUBTEST_2( householder(Matrix<float,2,3>()) );
    CALL_SUBTEST_3( householder(Matrix<double,3,5>()) );
    CALL_SUBTEST_4( householder(Matrix<float,4,4>()) );
    CALL_SUBTEST_5( householder(MatrixXd(10,12)) );
    CALL_SUBTEST_6( householder(MatrixXcf(16,17)) );
    CALL_SUBTEST_7( householder(MatrixXf(25,7)) );
    CALL_SUBTEST_8( householder(Matrix<double,1,1>()) );
  }
}