1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_GSL_HELPER
#define EIGEN_GSL_HELPER
#include <Eigen/Core>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_poly.h>
namespace Eigen {
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct GslTraits
{
typedef gsl_matrix* Matrix;
typedef gsl_vector* Vector;
static Matrix createMatrix(int rows, int cols) { return gsl_matrix_alloc(rows,cols); }
static Vector createVector(int size) { return gsl_vector_alloc(size); }
static void free(Matrix& m) { gsl_matrix_free(m); m=0; }
static void free(Vector& m) { gsl_vector_free(m); m=0; }
static void prod(const Matrix& m, const Vector& v, Vector& x) { gsl_blas_dgemv(CblasNoTrans,1,m,v,0,x); }
static void cholesky(Matrix& m) { gsl_linalg_cholesky_decomp(m); }
static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_cholesky_solve(m,b,x); }
static void eigen_symm(const Matrix& m, Vector& eval, Matrix& evec)
{
gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc(m->size1);
Matrix a = createMatrix(m->size1, m->size2);
gsl_matrix_memcpy(a, m);
gsl_eigen_symmv(a,eval,evec,w);
gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
gsl_eigen_symmv_free(w);
free(a);
}
static void eigen_symm_gen(const Matrix& m, const Matrix& _b, Vector& eval, Matrix& evec)
{
gsl_eigen_gensymmv_workspace * w = gsl_eigen_gensymmv_alloc(m->size1);
Matrix a = createMatrix(m->size1, m->size2);
Matrix b = createMatrix(_b->size1, _b->size2);
gsl_matrix_memcpy(a, m);
gsl_matrix_memcpy(b, _b);
gsl_eigen_gensymmv(a,b,eval,evec,w);
gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
gsl_eigen_gensymmv_free(w);
free(a);
}
template<class EIGEN_VECTOR, class EIGEN_ROOTS>
static void eigen_poly_solve(const EIGEN_VECTOR& poly, EIGEN_ROOTS& roots )
{
const int deg = poly.size()-1;
double *z = new double[2*deg];
double *a = new double[poly.size()];
for( int i=0; i<poly.size(); ++i ){ a[i] = poly[i]; }
gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (poly.size());
gsl_poly_complex_solve(a, poly.size(), w, z);
gsl_poly_complex_workspace_free (w);
for( int i=0; i<deg; ++i )
{
roots[i].real() = z[2*i];
roots[i].imag() = z[2*i+1];
}
delete[] a;
delete[] z;
}
};
template<typename Scalar> struct GslTraits<Scalar,true>
{
typedef gsl_matrix_complex* Matrix;
typedef gsl_vector_complex* Vector;
static Matrix createMatrix(int rows, int cols) { return gsl_matrix_complex_alloc(rows,cols); }
static Vector createVector(int size) { return gsl_vector_complex_alloc(size); }
static void free(Matrix& m) { gsl_matrix_complex_free(m); m=0; }
static void free(Vector& m) { gsl_vector_complex_free(m); m=0; }
static void cholesky(Matrix& m) { gsl_linalg_complex_cholesky_decomp(m); }
static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_complex_cholesky_solve(m,b,x); }
static void prod(const Matrix& m, const Vector& v, Vector& x)
{ gsl_blas_zgemv(CblasNoTrans,gsl_complex_rect(1,0),m,v,gsl_complex_rect(0,0),x); }
static void eigen_symm(const Matrix& m, gsl_vector* &eval, Matrix& evec)
{
gsl_eigen_hermv_workspace * w = gsl_eigen_hermv_alloc(m->size1);
Matrix a = createMatrix(m->size1, m->size2);
gsl_matrix_complex_memcpy(a, m);
gsl_eigen_hermv(a,eval,evec,w);
gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
gsl_eigen_hermv_free(w);
free(a);
}
static void eigen_symm_gen(const Matrix& m, const Matrix& _b, gsl_vector* &eval, Matrix& evec)
{
gsl_eigen_genhermv_workspace * w = gsl_eigen_genhermv_alloc(m->size1);
Matrix a = createMatrix(m->size1, m->size2);
Matrix b = createMatrix(_b->size1, _b->size2);
gsl_matrix_complex_memcpy(a, m);
gsl_matrix_complex_memcpy(b, _b);
gsl_eigen_genhermv(a,b,eval,evec,w);
gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
gsl_eigen_genhermv_free(w);
free(a);
}
};
template<typename MatrixType>
void convert(const MatrixType& m, gsl_matrix* &res)
{
// if (res)
// gsl_matrix_free(res);
res = gsl_matrix_alloc(m.rows(), m.cols());
for (int i=0 ; i<m.rows() ; ++i)
for (int j=0 ; j<m.cols(); ++j)
gsl_matrix_set(res, i, j, m(i,j));
}
template<typename MatrixType>
void convert(const gsl_matrix* m, MatrixType& res)
{
res.resize(int(m->size1), int(m->size2));
for (int i=0 ; i<res.rows() ; ++i)
for (int j=0 ; j<res.cols(); ++j)
res(i,j) = gsl_matrix_get(m,i,j);
}
template<typename VectorType>
void convert(const VectorType& m, gsl_vector* &res)
{
if (res) gsl_vector_free(res);
res = gsl_vector_alloc(m.size());
for (int i=0 ; i<m.size() ; ++i)
gsl_vector_set(res, i, m[i]);
}
template<typename VectorType>
void convert(const gsl_vector* m, VectorType& res)
{
res.resize (m->size);
for (int i=0 ; i<res.rows() ; ++i)
res[i] = gsl_vector_get(m, i);
}
template<typename MatrixType>
void convert(const MatrixType& m, gsl_matrix_complex* &res)
{
res = gsl_matrix_complex_alloc(m.rows(), m.cols());
for (int i=0 ; i<m.rows() ; ++i)
for (int j=0 ; j<m.cols(); ++j)
{
gsl_matrix_complex_set(res, i, j,
gsl_complex_rect(m(i,j).real(), m(i,j).imag()));
}
}
template<typename MatrixType>
void convert(const gsl_matrix_complex* m, MatrixType& res)
{
res.resize(int(m->size1), int(m->size2));
for (int i=0 ; i<res.rows() ; ++i)
for (int j=0 ; j<res.cols(); ++j)
res(i,j) = typename MatrixType::Scalar(
GSL_REAL(gsl_matrix_complex_get(m,i,j)),
GSL_IMAG(gsl_matrix_complex_get(m,i,j)));
}
template<typename VectorType>
void convert(const VectorType& m, gsl_vector_complex* &res)
{
res = gsl_vector_complex_alloc(m.size());
for (int i=0 ; i<m.size() ; ++i)
gsl_vector_complex_set(res, i, gsl_complex_rect(m[i].real(), m[i].imag()));
}
template<typename VectorType>
void convert(const gsl_vector_complex* m, VectorType& res)
{
res.resize(m->size);
for (int i=0 ; i<res.rows() ; ++i)
res[i] = typename VectorType::Scalar(
GSL_REAL(gsl_vector_complex_get(m, i)),
GSL_IMAG(gsl_vector_complex_get(m, i)));
}
}
#endif // EIGEN_GSL_HELPER
|