aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/geo_transformations.cpp
blob: d433561cbb1387e642c71e47d08241a98625a64d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>

template<typename T>
Matrix<T,2,1> angleToVec(T a)
{
  return Matrix<T,2,1>(std::cos(a), std::sin(a));
}

// This permits to workaround a bug in clang/llvm code generation.
template<typename T>
EIGEN_DONT_INLINE
void dont_over_optimize(T& x) { volatile typename T::Scalar tmp = x(0); x(0) = tmp; }

template<typename Scalar, int Mode, int Options> void non_projective_only()
{
    /* this test covers the following files:
     Cross.h Quaternion.h, Transform.cpp
  */
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> Quaternionx;
  typedef AngleAxis<Scalar> AngleAxisx;
  typedef Transform<Scalar,3,Mode,Options> Transform3;
  typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
  typedef Translation<Scalar,3> Translation3;

  Vector3 v0 = Vector3::Random(),
          v1 = Vector3::Random();

  Transform3 t0, t1, t2;

  Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));

  Quaternionx q1, q2;

  q1 = AngleAxisx(a, v0.normalized());

  t0 = Transform3::Identity();
  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());

  t0.linear() = q1.toRotationMatrix();

  v0 << 50, 2, 1;
  t0.scale(v0);

  VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());

  t0.setIdentity();
  t1.setIdentity();
  v1 << 1, 2, 3;
  t0.linear() = q1.toRotationMatrix();
  t0.pretranslate(v0);
  t0.scale(v1);
  t1.linear() = q1.conjugate().toRotationMatrix();
  t1.prescale(v1.cwiseInverse());
  t1.translate(-v0);

  VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));

  t1.fromPositionOrientationScale(v0, q1, v1);
  VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
  VERIFY_IS_APPROX(t1*v1, t0*v1);

  // translation * vector
  t0.setIdentity();
  t0.translate(v0);
  VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);

  // AlignedScaling * vector
  t0.setIdentity();
  t0.scale(v0);
  VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
}

template<typename Scalar, int Mode, int Options> void transformations()
{
  /* this test covers the following files:
     Cross.h Quaternion.h, Transform.cpp
  */
  using std::cos;
  using std::abs;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,4,4> Matrix4;
  typedef Matrix<Scalar,2,1> Vector2;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Matrix<Scalar,4,1> Vector4;
  typedef Quaternion<Scalar> Quaternionx;
  typedef AngleAxis<Scalar> AngleAxisx;
  typedef Transform<Scalar,2,Mode,Options> Transform2;
  typedef Transform<Scalar,3,Mode,Options> Transform3;
  typedef typename Transform3::MatrixType MatrixType;
  typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
  typedef Translation<Scalar,2> Translation2;
  typedef Translation<Scalar,3> Translation3;

  Vector3 v0 = Vector3::Random(),
          v1 = Vector3::Random();
  Matrix3 matrot1, m;

  Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
  Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>();
  
  while(v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random();
  while(v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random();

  VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
  VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0);
  if(abs(cos(a)) > test_precision<Scalar>())
  {
    VERIFY_IS_APPROX(cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
  }
  m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
  VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
  VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);

  Quaternionx q1, q2;
  q1 = AngleAxisx(a, v0.normalized());
  q2 = AngleAxisx(a, v1.normalized());

  // rotation matrix conversion
  matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
          * AngleAxisx(Scalar(0.2), Vector3::UnitY())
          * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
  VERIFY_IS_APPROX(matrot1 * v1,
       AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
    * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
    * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));

  // angle-axis conversion
  AngleAxisx aa = AngleAxisx(q1);
  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
  
  // The following test is stable only if 2*angle != angle and v1 is not colinear with axis
  if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) )
  {
    VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
  }

  aa.fromRotationMatrix(aa.toRotationMatrix());
  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
  // The following test is stable only if 2*angle != angle and v1 is not colinear with axis
  if( (abs(aa.angle()) > test_precision<Scalar>()) && (abs(aa.axis().dot(v1.normalized()))<(Scalar(1)-Scalar(4)*test_precision<Scalar>())) )
  {
    VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
  }

  // AngleAxis
  VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
    Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());

  AngleAxisx aa1;
  m = q1.toRotationMatrix();
  aa1 = m;
  VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
    Quaternionx(m).toRotationMatrix());

  // Transform
  // TODO complete the tests !
  a = 0;
  while (abs(a)<Scalar(0.1))
    a = internal::random<Scalar>(-Scalar(0.4)*Scalar(EIGEN_PI), Scalar(0.4)*Scalar(EIGEN_PI));
  q1 = AngleAxisx(a, v0.normalized());
  Transform3 t0, t1, t2;

  // first test setIdentity() and Identity()
  t0.setIdentity();
  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
  t0.matrix().setZero();
  t0 = Transform3::Identity();
  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());

  t0.setIdentity();
  t1.setIdentity();
  v1 << 1, 2, 3;
  t0.linear() = q1.toRotationMatrix();
  t0.pretranslate(v0);
  t0.scale(v1);
  t1.linear() = q1.conjugate().toRotationMatrix();
  t1.prescale(v1.cwiseInverse());
  t1.translate(-v0);

  VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));

  t1.fromPositionOrientationScale(v0, q1, v1);
  VERIFY_IS_APPROX(t1.matrix(), t0.matrix());

  t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
  t1.setIdentity(); t1.scale(v0).rotate(q1);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
  VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());

  // More transform constructors, operator=, operator*=

  Matrix3 mat3 = Matrix3::Random();
  Matrix4 mat4;
  mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
  Transform3 tmat3(mat3), tmat4(mat4);
  if(Mode!=int(AffineCompact))
    tmat4.matrix()(3,3) = Scalar(1);
  VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());

  Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
  Vector3 v3 = Vector3::Random().normalized();
  AngleAxisx aa3(a3, v3);
  Transform3 t3(aa3);
  Transform3 t4;
  t4 = aa3;
  VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
  t4.rotate(AngleAxisx(-a3,v3));
  VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
  t4 *= aa3;
  VERIFY_IS_APPROX(t3.matrix(), t4.matrix());

  do {
    v3 = Vector3::Random();
    dont_over_optimize(v3);
  } while (v3.cwiseAbs().minCoeff()<NumTraits<Scalar>::epsilon());
  Translation3 tv3(v3);
  Transform3 t5(tv3);
  t4 = tv3;
  VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
  t4.translate((-v3).eval());
  VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
  t4 *= tv3;
  VERIFY_IS_APPROX(t5.matrix(), t4.matrix());

  AlignedScaling3 sv3(v3);
  Transform3 t6(sv3);
  t4 = sv3;
  VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
  t4.scale(v3.cwiseInverse());
  VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
  t4 *= sv3;
  VERIFY_IS_APPROX(t6.matrix(), t4.matrix());

  // matrix * transform
  VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix());

  // chained Transform product
  VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());

  // check that Transform product doesn't have aliasing problems
  t5 = t4;
  t5 = t5*t5;
  VERIFY_IS_APPROX(t5, t4*t4);

  // 2D transformation
  Transform2 t20, t21;
  Vector2 v20 = Vector2::Random();
  Vector2 v21 = Vector2::Random();
  for (int k=0; k<2; ++k)
    if (abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
  t21.setIdentity();
  t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
  VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
    t21.pretranslate(v20).scale(v21).matrix());

  t21.setIdentity();
  t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
  VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
        * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );

  // Transform - new API
  // 3D
  t0.setIdentity();
  t0.rotate(q1).scale(v0).translate(v0);
  // mat * aligned scaling and mat * translation
  t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  // mat * transformation and aligned scaling * translation
  t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());


  t0.setIdentity();
  t0.scale(s0).translate(v0);
  t1 = Eigen::Scaling(s0) * Translation3(v0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  t0.prescale(s0);
  t1 = Eigen::Scaling(s0) * t1;
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  
  t0 = t3;
  t0.scale(s0);
  t1 = t3 * Eigen::Scaling(s0,s0,s0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  t0.prescale(s0);
  t1 = Eigen::Scaling(s0,s0,s0) * t1;
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  t0 = t3;
  t0.scale(s0);
  t1 = t3 * Eigen::Scaling(s0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  t0.prescale(s0);
  t1 = Eigen::Scaling(s0) * t1;
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  t0.setIdentity();
  t0.prerotate(q1).prescale(v0).pretranslate(v0);
  // translation * aligned scaling and transformation * mat
  t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  // scaling * mat and translation * mat
  t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  t0.setIdentity();
  t0.scale(v0).translate(v0).rotate(q1);
  // translation * mat and aligned scaling * transformation
  t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  // transformation * aligned scaling
  t0.scale(v0);
  t1 *= AlignedScaling3(v0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
  t1 = t1 * v0.asDiagonal();
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  // transformation * translation
  t0.translate(v0);
  t1 = t1 * Translation3(v0);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
  // translation * transformation
  t0.pretranslate(v0);
  t1 = Translation3(v0) * t1;
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  // transform * quaternion
  t0.rotate(q1);
  t1 = t1 * q1;
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  // translation * quaternion
  t0.translate(v1).rotate(q1);
  t1 = t1 * (Translation3(v1) * q1);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  // aligned scaling * quaternion
  t0.scale(v1).rotate(q1);
  t1 = t1 * (AlignedScaling3(v1) * q1);
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  // quaternion * transform
  t0.prerotate(q1);
  t1 = q1 * t1;
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  // quaternion * translation
  t0.rotate(q1).translate(v1);
  t1 = t1 * (q1 * Translation3(v1));
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  // quaternion * aligned scaling
  t0.rotate(q1).scale(v1);
  t1 = t1 * (q1 * AlignedScaling3(v1));
  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());

  // test transform inversion
  t0.setIdentity();
  t0.translate(v0);
  do {
    t0.linear().setRandom();
  } while(t0.linear().jacobiSvd().singularValues()(2)<test_precision<Scalar>());
  Matrix4 t044 = Matrix4::Zero();
  t044(3,3) = 1;
  t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
  VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
  t0.setIdentity();
  t0.translate(v0).rotate(q1);
  t044 = Matrix4::Zero();
  t044(3,3) = 1;
  t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
  VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));

  Matrix3 mat_rotation, mat_scaling;
  t0.setIdentity();
  t0.translate(v0).rotate(q1).scale(v1);
  t0.computeRotationScaling(&mat_rotation, &mat_scaling);
  VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
  VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
  VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
  t0.computeScalingRotation(&mat_scaling, &mat_rotation);
  VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
  VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
  VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));

  // test casting
  Transform<float,3,Mode> t1f = t1.template cast<float>();
  VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
  Transform<double,3,Mode> t1d = t1.template cast<double>();
  VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);

  Translation3 tr1(v0);
  Translation<float,3> tr1f = tr1.template cast<float>();
  VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
  Translation<double,3> tr1d = tr1.template cast<double>();
  VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);

  AngleAxis<float> aa1f = aa1.template cast<float>();
  VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
  AngleAxis<double> aa1d = aa1.template cast<double>();
  VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);

  Rotation2D<Scalar> r2d1(internal::random<Scalar>());
  Rotation2D<float> r2d1f = r2d1.template cast<float>();
  VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
  Rotation2D<double> r2d1d = r2d1.template cast<double>();
  VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
  
  for(int k=0; k<100; ++k)
  {
    Scalar angle = internal::random<Scalar>(-100,100);
    Rotation2D<Scalar> rot2(angle);
    VERIFY( rot2.smallestPositiveAngle() >= 0 );
    VERIFY( rot2.smallestPositiveAngle() <= Scalar(2)*Scalar(EIGEN_PI) );
    VERIFY_IS_APPROX( angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle()) );
    
    VERIFY( rot2.smallestAngle() >= -Scalar(EIGEN_PI) );
    VERIFY( rot2.smallestAngle() <=  Scalar(EIGEN_PI) );
    VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle()) );

    Matrix<Scalar,2,2> rot2_as_mat(rot2);
    Rotation2D<Scalar> rot3(rot2_as_mat);
    VERIFY_IS_APPROX( angleToVec(rot2.smallestAngle()),  angleToVec(rot3.angle()) );
  }

  s0 = internal::random<Scalar>(-100,100);
  s1 = internal::random<Scalar>(-100,100);
  Rotation2D<Scalar> R0(s0), R1(s1);
  
  t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0));
  t21 = Translation2(v20) * R0 * Eigen::Scaling(s0);
  VERIFY_IS_APPROX(t20,t21);
  
  t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0));
  t21 = Translation2(v20) * Eigen::Scaling(s0);
  VERIFY_IS_APPROX(t20,t21);
  
  VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle());
  VERIFY_IS_APPROX( angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle()) );
  VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle());

  if(std::cos(s0)>0)
    VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1));
  else
    VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle());
  
  // Check path length
  Scalar l = 0;
  int path_steps = 100;
  for(int k=0; k<path_steps; ++k)
  {
    Scalar a1 = R0.slerp(Scalar(k)/Scalar(path_steps), R1).angle();
    Scalar a2 = R0.slerp(Scalar(k+1)/Scalar(path_steps), R1).angle();
    l += std::abs(a2-a1);
  }
  VERIFY(l<=Scalar(EIGEN_PI)*(Scalar(1)+NumTraits<Scalar>::epsilon()*Scalar(path_steps/2)));
  
  // check basic features
  {
    Rotation2D<Scalar> r1;           // default ctor
    r1 = Rotation2D<Scalar>(s0);     // copy assignment
    VERIFY_IS_APPROX(r1.angle(),s0);
    Rotation2D<Scalar> r2(r1);       // copy ctor
    VERIFY_IS_APPROX(r2.angle(),s0);
  }

  {
    Transform3 t32(Matrix4::Random()), t33, t34;
    t34 = t33 = t32;
    t32.scale(v0);
    t33*=AlignedScaling3(v0);
    VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
    t33 = t34 * AlignedScaling3(v0);
    VERIFY_IS_APPROX(t32.matrix(), t33.matrix());
  }

}

template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
{
  VERIFY_IS_APPROX( q*(a1*v), (q*a1)*v );
  VERIFY_IS_APPROX( q*(a2*v), (q*a2)*v );
  VERIFY_IS_APPROX( q*(p*h).hnormalized(),  ((q*p)*h).hnormalized() );
}

template<typename A1, typename A2, typename P, typename Q, typename V, typename H>
void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h)
{
  VERIFY_IS_APPROX( a1*(q*v), (a1*q)*v );
  VERIFY_IS_APPROX( a2*(q*v), (a2*q)*v );
  VERIFY_IS_APPROX( p *(q*v).homogeneous(), (p *q)*v.homogeneous() );

  transform_associativity_left(a1, a2,p, q, v, h);
}

template<typename Scalar, int Dim, int Options,typename RotationType>
void transform_associativity(const RotationType& R)
{
  typedef Matrix<Scalar,Dim,1> VectorType;
  typedef Matrix<Scalar,Dim+1,1> HVectorType;
  typedef Matrix<Scalar,Dim,Dim> LinearType;
  typedef Matrix<Scalar,Dim+1,Dim+1> MatrixType;
  typedef Transform<Scalar,Dim,AffineCompact,Options> AffineCompactType;
  typedef Transform<Scalar,Dim,Affine,Options> AffineType;
  typedef Transform<Scalar,Dim,Projective,Options> ProjectiveType;
  typedef DiagonalMatrix<Scalar,Dim> ScalingType;
  typedef Translation<Scalar,Dim> TranslationType;

  AffineCompactType A1c; A1c.matrix().setRandom();
  AffineCompactType A2c; A2c.matrix().setRandom();
  AffineType A1(A1c);
  AffineType A2(A2c);
  ProjectiveType P1; P1.matrix().setRandom();
  VectorType v1 = VectorType::Random();
  VectorType v2 = VectorType::Random();
  HVectorType h1 = HVectorType::Random();
  Scalar s1 = internal::random<Scalar>();
  LinearType L = LinearType::Random();
  MatrixType M = MatrixType::Random();

  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2, v2, h1) );
  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, A2c, v2, h1) );
  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1) );
  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1) );
  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1) );
  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1) );
  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1) );
  CALL_SUBTEST( transform_associativity_left(A1c, A1, P1, L, v2, h1) );
  CALL_SUBTEST( transform_associativity2(A1c, A1, P1, R, v2, h1) );

  VERIFY_IS_APPROX( A1*(M*h1), (A1*M)*h1 );
  VERIFY_IS_APPROX( A1c*(M*h1), (A1c*M)*h1 );
  VERIFY_IS_APPROX( P1*(M*h1), (P1*M)*h1 );

  VERIFY_IS_APPROX( M*(A1*h1), (M*A1)*h1 );
  VERIFY_IS_APPROX( M*(A1c*h1), (M*A1c)*h1 );
  VERIFY_IS_APPROX( M*(P1*h1),  ((M*P1)*h1) );
}

template<typename Scalar> void transform_alignment()
{
  typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a;
  typedef Transform<Scalar,3,Projective,DontAlign> Projective3u;

  EIGEN_ALIGN_MAX Scalar array1[16];
  EIGEN_ALIGN_MAX Scalar array2[16];
  EIGEN_ALIGN_MAX Scalar array3[16+1];
  Scalar* array3u = array3+1;

  Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a;
  Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u;
  Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u;
  
  p1->matrix().setRandom();
  *p2 = *p1;
  *p3 = *p1;

  VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
  VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
  
  VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
  
  #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
  if(internal::packet_traits<Scalar>::Vectorizable)
    VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
  #endif
}

template<typename Scalar, int Dim, int Options> void transform_products()
{
  typedef Matrix<Scalar,Dim+1,Dim+1> Mat;
  typedef Transform<Scalar,Dim,Projective,Options> Proj;
  typedef Transform<Scalar,Dim,Affine,Options> Aff;
  typedef Transform<Scalar,Dim,AffineCompact,Options> AffC;

  Proj p; p.matrix().setRandom();
  Aff a; a.linear().setRandom(); a.translation().setRandom();
  AffC ac = a;

  Mat p_m(p.matrix()), a_m(a.matrix());

  VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m);
  VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m);
  VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m);
  VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m);
  VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m);
  VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m);
  VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m);
  VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m);
}

template<typename Scalar, int Mode, int Options> void transformations_no_scale()
{
     /* this test covers the following files:
     Cross.h Quaternion.h, Transform.h
  */
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Matrix<Scalar,4,1> Vector4;
  typedef Quaternion<Scalar> Quaternionx;
  typedef AngleAxis<Scalar> AngleAxisx;
  typedef Transform<Scalar,3,Mode,Options> Transform3;
  typedef Translation<Scalar,3> Translation3;
  typedef Matrix<Scalar,4,4> Matrix4;

  Vector3 v0 = Vector3::Random(),
          v1 = Vector3::Random();

  Transform3 t0, t1, t2;

  Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));

  Quaternionx q1, q2;

  q1 = AngleAxisx(a, v0.normalized());

  t0 = Transform3::Identity();
  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());

  t0.setIdentity();
  t1.setIdentity();
  v1 = Vector3::Ones();
  t0.linear() = q1.toRotationMatrix();
  t0.pretranslate(v0);
  t1.linear() = q1.conjugate().toRotationMatrix();
  t1.translate(-v0);

  VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));

  t1.fromPositionOrientationScale(v0, q1, v1);
  VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
  VERIFY_IS_APPROX(t1*v1, t0*v1);

  // translation * vector
  t0.setIdentity();
  t0.translate(v0);
  VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);

  // Conversion to matrix.
  Transform3 t3;
  t3.linear() = q1.toRotationMatrix();
  t3.translation() = v1;
  Matrix4 m3 = t3.matrix();
  VERIFY((m3 * m3.inverse()).isIdentity(test_precision<Scalar>()));
  // Verify implicit last row is initialized.
  VERIFY_IS_APPROX(Vector4(m3.row(3)), Vector4(0.0, 0.0, 0.0, 1.0));

  VERIFY_IS_APPROX(t3.rotation(), t3.linear());
  if(Mode==Isometry)
    VERIFY(t3.rotation().data()==t3.linear().data());
}

template<typename Scalar, int Mode, int Options> void transformations_computed_scaling_continuity()
{
  typedef Matrix<Scalar, 3, 1> Vector3;
  typedef Transform<Scalar, 3, Mode, Options> Transform3;
  typedef Matrix<Scalar, 3, 3> Matrix3;

  // Given: two transforms that differ by '2*eps'.
  Scalar eps(1e-3);
  Vector3 v0 = Vector3::Random().normalized(),
    v1 = Vector3::Random().normalized(),
    v3 = Vector3::Random().normalized();
  Transform3 t0, t1;
  // The interesting case is when their determinants have different signs.
  Matrix3 rank2 = 50 * v0 * v0.adjoint() + 20 * v1 * v1.adjoint();
  t0.linear() = rank2 + eps * v3 * v3.adjoint();
  t1.linear() = rank2 - eps * v3 * v3.adjoint();

  // When: computing the rotation-scaling parts
  Matrix3 r0, s0, r1, s1;
  t0.computeRotationScaling(&r0, &s0);
  t1.computeRotationScaling(&r1, &s1);

  // Then: the scaling parts should differ by no more than '2*eps'.
  const Scalar c(2.1); // 2 + room for rounding errors
  VERIFY((s0 - s1).norm() < c * eps);
}

EIGEN_DECLARE_TEST(geo_transformations)
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() ));
    CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() ));
    CALL_SUBTEST_1(( transformations_computed_scaling_continuity<double,Affine,AutoAlign>() ));   
    
    CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() ));
    CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() ));
    CALL_SUBTEST_2(( transform_alignment<float>() ));
    
    CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
    CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
    CALL_SUBTEST_3(( transform_alignment<double>() ));

    CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() ));
    CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() ));
    
    CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() ));
    CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() ));

    CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() ));
    CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() ));


    CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() ));
    CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() ));

    CALL_SUBTEST_8(( transform_associativity<double,2,ColMajor>(Rotation2D<double>(internal::random<double>()*double(EIGEN_PI))) ));
    CALL_SUBTEST_8(( transform_associativity<double,3,ColMajor>(Quaterniond::UnitRandom()) ));

    CALL_SUBTEST_9(( transformations_no_scale<double,Affine,AutoAlign>() ));
    CALL_SUBTEST_9(( transformations_no_scale<double,Isometry,AutoAlign>() ));
  }
}