aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/evaluators.cpp
blob: 62ba5b1262903f48745bdd5bf7c3569b5e52499e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#define EIGEN_ENABLE_EVALUATORS
#include "main.h"

using internal::copy_using_evaluator;
using namespace std;

#define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
#define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());

void test_evaluators()
{
  // Testing Matrix evaluator and Transpose
  Vector2d v = Vector2d::Random();
  const Vector2d v_const(v);
  Vector2d v2;
  RowVector2d w;

  VERIFY_IS_APPROX_EVALUATOR(v2, v);
  VERIFY_IS_APPROX_EVALUATOR(v2, v_const);

  // Testing Transpose
  VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
  VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());

  copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
  VERIFY_IS_APPROX(w,v.transpose().eval());

  copy_using_evaluator(w.transpose(), v_const);
  VERIFY_IS_APPROX(w,v_const.transpose().eval());

  // Testing Array evaluator
  ArrayXXf a(2,3);
  ArrayXXf b(3,2);
  a << 1,2,3, 4,5,6;
  const ArrayXXf a_const(a);

  VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());

  VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());

  // Testing CwiseNullaryOp evaluator
  copy_using_evaluator(w, RowVector2d::Random());
  VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...

  VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());

  VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
  
  // mix CwiseNullaryOp and transpose
  VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());

  {
    // test product expressions
    int s = internal::random<int>(1,100);
    MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
    a.setRandom();
    b.setRandom();
    c.setRandom();
    d.setRandom();
    VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
    VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
    VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);
  }
  
  {
    // test product with all possible sizes
    int s = internal::random<int>(1,100);
    Matrix<float,      1,      1> m11, res11;  m11.setRandom(1,1);
    Matrix<float,      1,      4> m14, res14;  m14.setRandom(1,4);
    Matrix<float,      1,Dynamic> m1X, res1X;  m1X.setRandom(1,s);
    Matrix<float,      4,      1> m41, res41;  m41.setRandom(4,1);
    Matrix<float,      4,      4> m44, res44;  m44.setRandom(4,4);
    Matrix<float,      4,Dynamic> m4X, res4X;  m4X.setRandom(4,s);
    Matrix<float,Dynamic,      1> mX1, resX1;  mX1.setRandom(s,1);
    Matrix<float,Dynamic,      4> mX4, resX4;  mX4.setRandom(s,4);
    Matrix<float,Dynamic,Dynamic> mXX, resXX;  mXX.setRandom(s,s);

    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
  }

  // this does not work because Random is eval-before-nested: 
  // copy_using_evaluator(w, Vector2d::Random().transpose());
  
  // test CwiseUnaryOp
  VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
  VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
  VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
  VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());

  // test CwiseBinaryOp
  VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
  VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));

  // dynamic matrices and arrays
  MatrixXd mat1(6,6), mat2(6,6);
  VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
  VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
  copy_using_evaluator(mat2.transpose(), mat1);
  VERIFY_IS_APPROX(mat2.transpose(), mat1);

  ArrayXXd arr1(6,6), arr2(6,6);
  VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
  
  // test automatic resizing
  mat2.resize(3,3);
  VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
  arr2.resize(9,9);
  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);

  // test direct traversal
  Matrix3f m3;
  Array33f a3;
  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity());  // matrix, nullary
  // TODO: find a way to test direct traversal with array
  VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose());  // transpose
  VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity());  // unary
  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero());  // binary
  VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2));  // block

  // test linear traversal
  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero());  // matrix, nullary
  VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero());  // array
  VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose());  // transpose
  VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero());  // unary
  VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3);  // binary  

  // test inner vectorization
  Matrix4f m4, m4src = Matrix4f::Random();
  Array44f a4, a4src = Matrix4f::Random();
  VERIFY_IS_APPROX_EVALUATOR(m4, m4src);  // matrix
  VERIFY_IS_APPROX_EVALUATOR(a4, a4src);  // array
  VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose());  // transpose
  // TODO: find out why Matrix4f::Zero() does not allow inner vectorization
  VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src);  // unary
  VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src);  // binary

  // test linear vectorization
  MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
  ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
  VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc);  // matrix
  VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc);  // array
  VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose());  // transpose
  VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6));  // nullary
  VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc);  // unary
  VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc);  // binary

  // test blocks and slice vectorization
  VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
  VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));

  Matrix4f m4ref = m4;
  copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
  m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
  VERIFY_IS_APPROX(m4, m4ref);

  mX.setIdentity(20,20);
  MatrixXf mXref = MatrixXf::Identity(20,20);
  mXsrc = MatrixXf::Random(9,12);
  copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
  mXref.block(4, 4, 9, 12) = mXsrc;
  VERIFY_IS_APPROX(mX, mXref);

  // test Map
  const float raw[3] = {1,2,3};
  float buffer[3] = {0,0,0};
  Vector3f v3;
  Array3f a3f;
  VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
  VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
  Vector3f::Map(buffer) = 2*v3;
  VERIFY(buffer[0] == 2);
  VERIFY(buffer[1] == 4);
  VERIFY(buffer[2] == 6);

  // test CwiseUnaryView
  mat1.setRandom();
  mat2.setIdentity();
  MatrixXcd matXcd(6,6), matXcd_ref(6,6);
  copy_using_evaluator(matXcd.real(), mat1);
  copy_using_evaluator(matXcd.imag(), mat2);
  matXcd_ref.real() = mat1;
  matXcd_ref.imag() = mat2;
  VERIFY_IS_APPROX(matXcd, matXcd_ref);

  // test Select
  VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));

  // test Replicate
  mXsrc = MatrixXf::Random(6, 6);
  VectorXf vX = VectorXf::Random(6);
  mX.resize(6, 6);
  VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
  matXcd.resize(12, 12);
  VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
  VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));

  // test partial reductions
  VectorXd vec1(6);
  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());

  // test MatrixWrapper and ArrayWrapper
  mat1.setRandom(6,6);
  arr1.setRandom(6,6);
  VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
  VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
  VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
  VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
  mat2.array() = arr1 * arr1;
  VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
  arr2.matrix() = MatrixXd::Identity(6,6);
  VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());

  // test Reverse
  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
  VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
  arr2.reverse() = arr1;
  VERIFY_IS_APPROX(arr2, arr1.reverse());
  mat2.array() = mat1.array().reverse();
  VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());

  // test Diagonal
  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
  vec1.resize(5);
  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
  VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
  vec1.setRandom();

  mat2 = mat1;
  copy_using_evaluator(mat1.diagonal(1), vec1);
  mat2.diagonal(1) = vec1;
  VERIFY_IS_APPROX(mat1, mat2);

  copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
  mat2.diagonal<-1>() = mat2.diagonal(1);
  VERIFY_IS_APPROX(mat1, mat2);
  
  {
    // test swapping
    MatrixXd mat1, mat2, mat1ref, mat2ref;
    mat1ref = mat1 = MatrixXd::Random(6, 6);
    mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
    swap_using_evaluator(mat1, mat2);
    mat1ref.swap(mat2ref);
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);

    swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
    mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);

    swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
    mat1.row(2).swap(mat2.col(3).transpose());
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);
  }

  {
    // test compound assignment
    const Matrix4d mat_const = Matrix4d::Random(); 
    Matrix4d mat, mat_ref;
    mat = mat_ref = Matrix4d::Identity();
    add_assign_using_evaluator(mat, mat_const);
    mat_ref += mat_const;
    VERIFY_IS_APPROX(mat, mat_ref);

    subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
    mat_ref.row(1) -= 2*mat_ref.row(2);
    VERIFY_IS_APPROX(mat, mat_ref);

    const ArrayXXf arr_const = ArrayXXf::Random(5,3); 
    ArrayXXf arr, arr_ref;
    arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
    multiply_assign_using_evaluator(arr, arr_const);
    arr_ref *= arr_const;
    VERIFY_IS_APPROX(arr, arr_ref);

    divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
    arr_ref.row(1) /= (arr_ref.row(2) + 1);
    VERIFY_IS_APPROX(arr, arr_ref);
  }
}