aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/evaluators.cpp
blob: 2810cd265187c27c669ee055f9a04528571a3664 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

#include "main.h"

namespace Eigen {

  template<typename Lhs,typename Rhs>
  const Product<Lhs,Rhs>
  prod(const Lhs& lhs, const Rhs& rhs)
  {
    return Product<Lhs,Rhs>(lhs,rhs);
  }

  template<typename Lhs,typename Rhs>
  const Product<Lhs,Rhs,LazyProduct>
  lazyprod(const Lhs& lhs, const Rhs& rhs)
  {
    return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
  }
  
  template<typename DstXprType, typename SrcXprType>
  EIGEN_STRONG_INLINE
  DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
  {
    call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
    return dst.const_cast_derived();
  }
  
  template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
  EIGEN_STRONG_INLINE
  const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
  {
    call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
    return dst.expression();
  }
  
  template<typename DstXprType, typename SrcXprType>
  EIGEN_STRONG_INLINE
  DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
  {
    #ifdef EIGEN_NO_AUTOMATIC_RESIZING
    eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
                                                          : (dst.rows() == src.rows() && dst.cols() == src.cols())))
                && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
  #else
    dst.const_cast_derived().resizeLike(src.derived());
  #endif
    
    call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
    return dst.const_cast_derived();
  }

  template<typename DstXprType, typename SrcXprType>
  void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>());
  }

  template<typename DstXprType, typename SrcXprType>
  void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>());
  }

  template<typename DstXprType, typename SrcXprType>
  void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>());
  }

  template<typename DstXprType, typename SrcXprType>
  void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>());
  }
  
  template<typename DstXprType, typename SrcXprType>
  void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
  }

  namespace internal {
    template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
    EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
    {
      call_assignment_no_alias(dst.expression(), src, func);
    }

    template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
    EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
    {
      call_restricted_packet_assignment_no_alias(dst.expression(), src, func);
    }
  }
  
}

template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; }

using namespace std;

#define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
#define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());

EIGEN_DECLARE_TEST(evaluators)
{
  // Testing Matrix evaluator and Transpose
  Vector2d v = Vector2d::Random();
  const Vector2d v_const(v);
  Vector2d v2;
  RowVector2d w;

  VERIFY_IS_APPROX_EVALUATOR(v2, v);
  VERIFY_IS_APPROX_EVALUATOR(v2, v_const);

  // Testing Transpose
  VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
  VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());

  copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
  VERIFY_IS_APPROX(w,v.transpose().eval());

  copy_using_evaluator(w.transpose(), v_const);
  VERIFY_IS_APPROX(w,v_const.transpose().eval());

  // Testing Array evaluator
  {
    ArrayXXf a(2,3);
    ArrayXXf b(3,2);
    a << 1,2,3, 4,5,6;
    const ArrayXXf a_const(a);

    VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());

    VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());

    // Testing CwiseNullaryOp evaluator
    copy_using_evaluator(w, RowVector2d::Random());
    VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...

    VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());

    VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
    
    // mix CwiseNullaryOp and transpose
    VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
  }

  {
    // test product expressions
    int s = internal::random<int>(1,100);
    MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
    a.setRandom();
    b.setRandom();
    c.setRandom();
    d.setRandom();
    VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
    VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
    VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);

    // check that prod works even with aliasing present
    c = a*a;
    copy_using_evaluator(a, prod(a,a));
    VERIFY_IS_APPROX(a,c);

    // check compound assignment of products
    d = c;
    add_assign_using_evaluator(c.noalias(), prod(a,b));
    d.noalias() += a*b;
    VERIFY_IS_APPROX(c, d);

    d = c;
    subtract_assign_using_evaluator(c.noalias(), prod(a,b));
    d.noalias() -= a*b;
    VERIFY_IS_APPROX(c, d);
  }

  {
    // test product with all possible sizes
    int s = internal::random<int>(1,100);
    Matrix<float,      1,      1> m11, res11;  m11.setRandom(1,1);
    Matrix<float,      1,      4> m14, res14;  m14.setRandom(1,4);
    Matrix<float,      1,Dynamic> m1X, res1X;  m1X.setRandom(1,s);
    Matrix<float,      4,      1> m41, res41;  m41.setRandom(4,1);
    Matrix<float,      4,      4> m44, res44;  m44.setRandom(4,4);
    Matrix<float,      4,Dynamic> m4X, res4X;  m4X.setRandom(4,s);
    Matrix<float,Dynamic,      1> mX1, resX1;  mX1.setRandom(s,1);
    Matrix<float,Dynamic,      4> mX4, resX4;  mX4.setRandom(s,4);
    Matrix<float,Dynamic,Dynamic> mXX, resXX;  mXX.setRandom(s,s);

    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
  }

  {
    ArrayXXf a(2,3);
    ArrayXXf b(3,2);
    a << 1,2,3, 4,5,6;
    const ArrayXXf a_const(a);
    
    // this does not work because Random is eval-before-nested: 
    // copy_using_evaluator(w, Vector2d::Random().transpose());

    // test CwiseUnaryOp
    VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
    VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
    VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
    VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());

    // test CwiseBinaryOp
    VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
    VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));

    // dynamic matrices and arrays
    MatrixXd mat1(6,6), mat2(6,6);
    VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
    VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
    copy_using_evaluator(mat2.transpose(), mat1);
    VERIFY_IS_APPROX(mat2.transpose(), mat1);

    ArrayXXd arr1(6,6), arr2(6,6);
    VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
    
    // test automatic resizing
    mat2.resize(3,3);
    VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
    arr2.resize(9,9);
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);

    // test direct traversal
    Matrix3f m3;
    Array33f a3;
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity());  // matrix, nullary
    // TODO: find a way to test direct traversal with array
    VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose());  // transpose
    VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity());  // unary
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero());  // binary
    VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2));  // block

    // test linear traversal
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero());  // matrix, nullary
    VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero());  // array
    VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose());  // transpose
    VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero());  // unary
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3);  // binary  

    // test inner vectorization
    Matrix4f m4, m4src = Matrix4f::Random();
    Array44f a4, a4src = Matrix4f::Random();
    VERIFY_IS_APPROX_EVALUATOR(m4, m4src);  // matrix
    VERIFY_IS_APPROX_EVALUATOR(a4, a4src);  // array
    VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose());  // transpose
    // TODO: find out why Matrix4f::Zero() does not allow inner vectorization
    VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src);  // unary
    VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src);  // binary

    // test linear vectorization
    MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
    ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
    VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc);  // matrix
    VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc);  // array
    VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose());  // transpose
    VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6));  // nullary
    VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc);  // unary
    VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc);  // binary

    // test blocks and slice vectorization
    VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
    VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));

    Matrix4f m4ref = m4;
    copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
    m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
    VERIFY_IS_APPROX(m4, m4ref);

    mX.setIdentity(20,20);
    MatrixXf mXref = MatrixXf::Identity(20,20);
    mXsrc = MatrixXf::Random(9,12);
    copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
    mXref.block(4, 4, 9, 12) = mXsrc;
    VERIFY_IS_APPROX(mX, mXref);

    // test Map
    const float raw[3] = {1,2,3};
    float buffer[3] = {0,0,0};
    Vector3f v3;
    Array3f a3f;
    VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
    VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
    Vector3f::Map(buffer) = 2*v3;
    VERIFY(buffer[0] == 2);
    VERIFY(buffer[1] == 4);
    VERIFY(buffer[2] == 6);

    // test CwiseUnaryView
    mat1.setRandom();
    mat2.setIdentity();
    MatrixXcd matXcd(6,6), matXcd_ref(6,6);
    copy_using_evaluator(matXcd.real(), mat1);
    copy_using_evaluator(matXcd.imag(), mat2);
    matXcd_ref.real() = mat1;
    matXcd_ref.imag() = mat2;
    VERIFY_IS_APPROX(matXcd, matXcd_ref);

    // test Select
    VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));

    // test Replicate
    mXsrc = MatrixXf::Random(6, 6);
    VectorXf vX = VectorXf::Random(6);
    mX.resize(6, 6);
    VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
    matXcd.resize(12, 12);
    VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
    VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));

    // test partial reductions
    VectorXd vec1(6);
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());

    // test MatrixWrapper and ArrayWrapper
    mat1.setRandom(6,6);
    arr1.setRandom(6,6);
    VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
    VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
    VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
    VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
    mat2.array() = arr1 * arr1;
    VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
    arr2.matrix() = MatrixXd::Identity(6,6);
    VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());

    // test Reverse
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
    arr2.reverse() = arr1;
    VERIFY_IS_APPROX(arr2, arr1.reverse());
    mat2.array() = mat1.array().reverse();
    VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());

    // test Diagonal
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
    vec1.resize(5);
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
    vec1.setRandom();

    mat2 = mat1;
    copy_using_evaluator(mat1.diagonal(1), vec1);
    mat2.diagonal(1) = vec1;
    VERIFY_IS_APPROX(mat1, mat2);

    copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
    mat2.diagonal<-1>() = mat2.diagonal(1);
    VERIFY_IS_APPROX(mat1, mat2);
  }
  
  {
    // test swapping
    MatrixXd mat1, mat2, mat1ref, mat2ref;
    mat1ref = mat1 = MatrixXd::Random(6, 6);
    mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
    swap_using_evaluator(mat1, mat2);
    mat1ref.swap(mat2ref);
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);

    swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
    mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);

    swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
    mat1.row(2).swap(mat2.col(3).transpose());
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);
  }

  {
    // test compound assignment
    const Matrix4d mat_const = Matrix4d::Random(); 
    Matrix4d mat, mat_ref;
    mat = mat_ref = Matrix4d::Identity();
    add_assign_using_evaluator(mat, mat_const);
    mat_ref += mat_const;
    VERIFY_IS_APPROX(mat, mat_ref);

    subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
    mat_ref.row(1) -= 2*mat_ref.row(2);
    VERIFY_IS_APPROX(mat, mat_ref);

    const ArrayXXf arr_const = ArrayXXf::Random(5,3); 
    ArrayXXf arr, arr_ref;
    arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
    multiply_assign_using_evaluator(arr, arr_const);
    arr_ref *= arr_const;
    VERIFY_IS_APPROX(arr, arr_ref);

    divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
    arr_ref.row(1) /= (arr_ref.row(2) + 1);
    VERIFY_IS_APPROX(arr, arr_ref);
  }
  
  {
    // test triangular shapes
    MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
    A.setRandom();B.setRandom();
    VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
    
    A.setRandom();B.setRandom();
    VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
    
    A.setRandom();B.setRandom();
    VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
    
    A.setRandom();B.setRandom();
    C = B; C.triangularView<Upper>() = A;
    copy_using_evaluator(B.triangularView<Upper>(), A);
    VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
    
    A.setRandom();B.setRandom();
    C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
    copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
    VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
    
    
    A.setRandom();B.setRandom();
    C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
    copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
    VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
    
    
    A.setRandom();B.setRandom(); C = B; D = A;
    C.triangularView<Upper>().swap(D.triangularView<Upper>());
    swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
    VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
    
    
    VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
    
    VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
  }

  {
    // test diagonal shapes
    VectorXd d = VectorXd::Random(6);
    MatrixXd A = MatrixXd::Random(6,6), B(6,6);
    A.setRandom();B.setRandom();
    
    VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
    VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
  }

  {
    // test CoeffReadCost
    Matrix4d a, b;
    VERIFY_IS_EQUAL( get_cost(a), 1 );
    VERIFY_IS_EQUAL( get_cost(a+b), 3);
    VERIFY_IS_EQUAL( get_cost(2*a+b), 4);
    VERIFY_IS_EQUAL( get_cost(a*b), 1);
    VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15);
    VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1);
    VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15);
    VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1);
    VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15);
  }

  // regression test for PR 544 and bug 1622 (introduced in #71609c4)
  {
    // test restricted_packet_assignment with an unaligned destination
    const size_t M = 2;
    const size_t K = 2;
    const size_t N = 5;
    float *destMem = new float[(M*N) + 1];
    float *dest = (internal::UIntPtr(destMem)%EIGEN_MAX_ALIGN_BYTES) == 0 ? destMem+1 : destMem;

    const Matrix<float, Dynamic, Dynamic, RowMajor> a = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(M, K);
    const Matrix<float, Dynamic, Dynamic, RowMajor> b = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(K, N);
    
    Map<Matrix<float, Dynamic, Dynamic, RowMajor> > z(dest, M, N);;
    Product<Matrix<float, Dynamic, Dynamic, RowMajor>, Matrix<float, Dynamic, Dynamic, RowMajor>, LazyProduct> tmp(a,b);
    internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op<float, float>());
    
    VERIFY_IS_APPROX(z, a*b);
    delete[] destMem;
  }
}