aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/eigensolver_selfadjoint.cpp
blob: f2146cb8861050e19d487b74be7ac0b049139178 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/Eigenvalues>

#ifdef HAS_GSL
#include "gsl_helper.h"
#endif

template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
{
  /* this test covers the following files:
     EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
  */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;

  MatrixType b = MatrixType::Random(rows,cols);
  MatrixType b1 = MatrixType::Random(rows,cols);
  MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;

  SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
  // generalized eigen pb
  SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);

  #ifdef HAS_GSL
  if (ei_is_same_type<RealScalar,double>::ret)
  {
    typedef GslTraits<Scalar> Gsl;
    typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
    typename GslTraits<RealScalar>::Vector gEval=0;
    RealVectorType _eval;
    MatrixType _evec;
    convert<MatrixType>(symmA, gSymmA);
    convert<MatrixType>(symmB, gSymmB);
    convert<MatrixType>(symmA, gEvec);
    gEval = GslTraits<RealScalar>::createVector(rows);

    Gsl::eigen_symm(gSymmA, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);

    // test gsl itself !
    VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));

    // compare with eigen
    VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwiseAbs(), eiSymm.eigenvectors().cwiseAbs());

    // generalized pb
    Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
    convert(gEval, _eval);
    convert(gEvec, _evec);
    // test GSL itself:
    VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));

    // compare with eigen
//     std::cerr << _eval.transpose() << "\n" << eiSymmGen.eigenvalues().transpose() << "\n\n";
//     std::cerr << _evec.format(6) << "\n\n" << eiSymmGen.eigenvectors().format(6) << "\n\n\n";
    VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
    VERIFY_IS_APPROX(_evec.cwiseAbs(), eiSymmGen.eigenvectors().cwiseAbs());

    Gsl::free(gSymmA);
    Gsl::free(gSymmB);
    GslTraits<RealScalar>::free(gEval);
    Gsl::free(gEvec);
  }
  #endif

  VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
          eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));

  // generalized eigen problem Ax = lBx
  VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
          symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));

  MatrixType sqrtSymmA = eiSymm.operatorSqrt();
  VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA);
  VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
}

void test_eigensolver_selfadjoint()
{
  for(int i = 0; i < g_repeat; i++) {
    // very important to test a 3x3 matrix since we provide a special path for it
    CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
    CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
    CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(10,10)) );
    CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(19,19)) );
    CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(17,17)) );

    // some trivial but implementation-wise tricky cases
    CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
    CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
    CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
    CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
  }
}