aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/eigensolver_generic.cpp
blob: 7adb986658675525847cf40eb9b74cbb18d52f08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>

template<typename EigType,typename MatType>
void check_eigensolver_for_given_mat(const EigType &eig, const MatType& a)
{
  typedef typename NumTraits<typename MatType::Scalar>::Real RealScalar;
  typedef Matrix<RealScalar, MatType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<RealScalar> Complex;
  Index n = a.rows();
  VERIFY_IS_EQUAL(eig.info(), Success);
  VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix());
  VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(),
                   eig.eigenvectors() * eig.eigenvalues().asDiagonal());
  VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose());
  VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues());
}

template<typename MatrixType> void eigensolver(const MatrixType& m)
{
  /* this test covers the following files:
     EigenSolver.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename std::complex<RealScalar> Complex;

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType a1 = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;

  EigenSolver<MatrixType> ei0(symmA);
  VERIFY_IS_EQUAL(ei0.info(), Success);
  VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
  VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
    (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));

  EigenSolver<MatrixType> ei1(a);
  CALL_SUBTEST( check_eigensolver_for_given_mat(ei1,a) );

  EigenSolver<MatrixType> ei2;
  ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
  VERIFY_IS_EQUAL(ei2.info(), Success);
  VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
  VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
  if (rows > 2) {
    ei2.setMaxIterations(1).compute(a);
    VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
    VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
  }

  EigenSolver<MatrixType> eiNoEivecs(a, false);
  VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
  VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
  VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));

  if (rows > 2 && rows < 20)
  {
    // Test matrix with NaN
    a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    EigenSolver<MatrixType> eiNaN(a);
    VERIFY_IS_NOT_EQUAL(eiNaN.info(), Success);
  }

  // regression test for bug 1098
  {
    EigenSolver<MatrixType> eig(a.adjoint() * a);
    eig.compute(a.adjoint() * a);
  }

  // regression test for bug 478
  {
    a.setZero();
    EigenSolver<MatrixType> ei3(a);
    VERIFY_IS_EQUAL(ei3.info(), Success);
    VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
    VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
  }
}

template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
{
  EigenSolver<MatrixType> eig;
  VERIFY_RAISES_ASSERT(eig.eigenvectors());
  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
  VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
  VERIFY_RAISES_ASSERT(eig.eigenvalues());

  MatrixType a = MatrixType::Random(m.rows(),m.cols());
  eig.compute(a, false);
  VERIFY_RAISES_ASSERT(eig.eigenvectors());
  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
}


template<typename CoeffType>
Matrix<typename CoeffType::Scalar,Dynamic,Dynamic>
make_companion(const CoeffType& coeffs)
{
  Index n = coeffs.size()-1;
  Matrix<typename CoeffType::Scalar,Dynamic,Dynamic> res(n,n);
  res.setZero();
	res.row(0) = -coeffs.tail(n) / coeffs(0);
	res.diagonal(-1).setOnes();
  return res;
}

template<int>
void eigensolver_generic_extra()
{
  {
    // regression test for bug 793
    MatrixXd a(3,3);
    a << 0,  0,  1,
        1,  1, 1,
        1, 1e+200,  1;
    Eigen::EigenSolver<MatrixXd> eig(a);
    double scale = 1e-200; // scale to avoid overflow during the comparisons
    VERIFY_IS_APPROX(a * eig.pseudoEigenvectors()*scale, eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()*scale);
    VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()*scale);
  }
  {
    // check a case where all eigenvalues are null.
    MatrixXd a(2,2);
    a << 1,  1,
        -1, -1;
    Eigen::EigenSolver<MatrixXd> eig(a);
    VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.);
    VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm()+1., 1.);
    VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm()+1., 1.);
    VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.);
    VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.);
  }

  // regression test for bug 933
  {
    {
      VectorXd coeffs(5); coeffs << 1, -3, -175, -225, 2250;
      MatrixXd C = make_companion(coeffs);
      EigenSolver<MatrixXd> eig(C);
      CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
    }
    {
      // this test is tricky because it requires high accuracy in smallest eigenvalues
      VectorXd coeffs(5); coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08;
      MatrixXd C = make_companion(coeffs);
      EigenSolver<MatrixXd> eig(C);
      CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
      Index n = C.rows();
      for(Index i=0;i<n;++i)
      {
        typedef std::complex<double> Complex;
        MatrixXcd ac = C.cast<Complex>();
        ac.diagonal().array() -= eig.eigenvalues()(i);
        VectorXd sv = ac.jacobiSvd().singularValues();
        // comparing to sv(0) is not enough here to catch the "bug",
        // the hard-coded 1.0 is important!
        VERIFY_IS_MUCH_SMALLER_THAN(sv(n-1), 1.0);
      }
    }
  }
  // regression test for bug 1557
  {
    // this test is interesting because it contains zeros on the diagonal.
    MatrixXd A_bug1557(3,3);
    A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0;
    EigenSolver<MatrixXd> eig(A_bug1557);
    CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1557) );
  }

  // regression test for bug 1174
  {
    Index n = 12;
    MatrixXf A_bug1174(n,n);
    A_bug1174 <<  262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
                  262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
                  262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
                  262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
                  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0;
    EigenSolver<MatrixXf> eig(A_bug1174);
    CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1174) );
  }
}

EIGEN_DECLARE_TEST(eigensolver_generic)
{
  int s = 0;
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( eigensolver(Matrix4f()) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
    TEST_SET_BUT_UNUSED_VARIABLE(s)

    // some trivial but implementation-wise tricky cases
    CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
    CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
    CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
    CALL_SUBTEST_4( eigensolver(Matrix2d()) );
  }

  CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
  s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
  CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
  CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
  CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );

  // Test problem size constructors
  CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));

  // regression test for bug 410
  CALL_SUBTEST_2(
  {
     MatrixXd A(1,1);
     A(0,0) = std::sqrt(-1.); // is Not-a-Number
     Eigen::EigenSolver<MatrixXd> solver(A);
     VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
  }
  );
  
  CALL_SUBTEST_2( eigensolver_generic_extra<0>() );
  
  TEST_SET_BUT_UNUSED_VARIABLE(s)
}