aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/eigensolver_complex.cpp
blob: 1cd55a2cd697f1f6cbc9fc87f02d3bc1d2eac62e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>

/* Check that two column vectors are approximately equal upto permutations,
   by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */
template<typename VectorType>
void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
{
  typedef typename NumTraits<typename VectorType::Scalar>::Real RealScalar;

  VERIFY(vec1.cols() == 1);
  VERIFY(vec2.cols() == 1);
  VERIFY(vec1.rows() == vec2.rows());
  for (int k = 1; k <= vec1.rows(); ++k)
  {
    VERIFY_IS_APPROX(vec1.array().pow(RealScalar(k)).sum(), vec2.array().pow(RealScalar(k)).sum());
  }
}


template<typename MatrixType> void eigensolver(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     ComplexEigenSolver.h, and indirectly ComplexSchur.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;

  MatrixType a = MatrixType::Random(rows,cols);
  MatrixType symmA =  a.adjoint() * a;

  ComplexEigenSolver<MatrixType> ei0(symmA);
  VERIFY_IS_EQUAL(ei0.info(), Success);
  VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());

  ComplexEigenSolver<MatrixType> ei1(a);
  VERIFY_IS_EQUAL(ei1.info(), Success);
  VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
  // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
  // another algorithm so results may differ slightly
  verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());

  ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
  VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
  VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());

  // Regression test for issue #66
  MatrixType z = MatrixType::Zero(rows,cols);
  ComplexEigenSolver<MatrixType> eiz(z);
  VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());

  MatrixType id = MatrixType::Identity(rows, cols);
  VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));

  if (rows > 1)
  {
    // Test matrix with NaN
    a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    ComplexEigenSolver<MatrixType> eiNaN(a);
    VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
  }
}

template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
{
  ComplexEigenSolver<MatrixType> eig;
  VERIFY_RAISES_ASSERT(eig.eigenvectors());
  VERIFY_RAISES_ASSERT(eig.eigenvalues());

  MatrixType a = MatrixType::Random(m.rows(),m.cols());
  eig.compute(a, false);
  VERIFY_RAISES_ASSERT(eig.eigenvectors());
}

void test_eigensolver_complex()
{
  int s;
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) );
    CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) );
    CALL_SUBTEST_4( eigensolver(Matrix3f()) );
  }

  CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) );
  s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
  CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) );
  CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) );
  CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) );

  // Test problem size constructors
  CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf>(s));
  
  EIGEN_UNUSED_VARIABLE(s)
}