1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#define EIGEN2_SUPPORT
#include "main.h"
template<typename MatrixType> void eigen2support(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols);
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>();
// scalar addition
VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
m3 = m1;
m3.cwise() += s2;
VERIFY_IS_APPROX(m3, m1.cwise() + s2);
m3 = m1;
m3.cwise() -= s1;
VERIFY_IS_APPROX(m3, m1.cwise() - s1);
VERIFY_IS_EQUAL((m1.corner(TopLeft,1,1)), (m1.block(0,0,1,1)));
VERIFY_IS_EQUAL((m1.template corner<1,1>(TopLeft)), (m1.template block<1,1>(0,0)));
VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0,1)));
VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0,1)));
VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows-1,1)));
VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows-1,1)));
m1.minor(0,0);
}
void test_eigen2support()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( eigen2support(Matrix<double,1,1>()) );
CALL_SUBTEST_2( eigen2support(MatrixXd(1,1)) );
CALL_SUBTEST_4( eigen2support(Matrix3f()) );
CALL_SUBTEST_5( eigen2support(Matrix4d()) );
CALL_SUBTEST_2( eigen2support(MatrixXf(200,200)) );
CALL_SUBTEST_6( eigen2support(MatrixXcd(100,100)) );
}
}
|