aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/eigen2/eigen2_regression.cpp
blob: c68b58da85248155591de9aa6d1e5f2a51f785c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/LeastSquares>

template<typename VectorType,
         typename HyperplaneType>
void makeNoisyCohyperplanarPoints(int numPoints,
                                  VectorType **points,
                                  HyperplaneType *hyperplane,
                                  typename VectorType::Scalar noiseAmplitude)
{
  typedef typename VectorType::Scalar Scalar;
  const int size = points[0]->size();
  // pick a random hyperplane, store the coefficients of its equation
  hyperplane->coeffs().resize(size + 1);
  for(int j = 0; j < size + 1; j++)
  {
    do {
      hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>();
    } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5);
  }

  // now pick numPoints random points on this hyperplane
  for(int i = 0; i < numPoints; i++)
  {
    VectorType& cur_point = *(points[i]);
    do
    {
      cur_point = VectorType::Random(size)/*.normalized()*/;
      // project cur_point onto the hyperplane
      Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum();
      cur_point *= hyperplane->coeffs().coeff(size) / x;
    } while( cur_point.norm() < 0.5
          || cur_point.norm() > 2.0 );
  }

  // add some noise to these points
  for(int i = 0; i < numPoints; i++ )
    *(points[i]) += noiseAmplitude * VectorType::Random(size);
}

template<typename VectorType>
void check_linearRegression(int numPoints,
                            VectorType **points,
                            const VectorType& original,
                            typename VectorType::Scalar tolerance)
{
  int size = points[0]->size();
  assert(size==2);
  VectorType result(size);
  linearRegression(numPoints, points, &result, 1);
  typename VectorType::Scalar error = (result - original).norm() / original.norm();
  VERIFY(ei_abs(error) < ei_abs(tolerance));
}

template<typename VectorType,
         typename HyperplaneType>
void check_fitHyperplane(int numPoints,
                         VectorType **points,
                         const HyperplaneType& original,
                         typename VectorType::Scalar tolerance)
{
  int size = points[0]->size();
  HyperplaneType result(size);
  fitHyperplane(numPoints, points, &result);
  result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size);
  typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm();
  std::cout << ei_abs(error) << "  xxx   " << ei_abs(tolerance) << std::endl;
  VERIFY(ei_abs(error) < ei_abs(tolerance));
}

void test_eigen2_regression()
{
  for(int i = 0; i < g_repeat; i++)
  {
#ifdef EIGEN_TEST_PART_1
    {
      Vector2f points2f [1000];
      Vector2f *points2f_ptrs [1000];
      for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
      Vector2f coeffs2f;
      Hyperplane<float,2> coeffs3f;
      makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
      coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1];
      coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1];
      CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f));
      CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f));
      CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f));
    }
#endif
#ifdef EIGEN_TEST_PART_2
    {
      Vector2f points2f [1000];
      Vector2f *points2f_ptrs [1000];
      for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
      Hyperplane<float,2> coeffs3f;
      makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
      CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f));
      CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f));
      CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f));
    }
#endif
#ifdef EIGEN_TEST_PART_3
    {
      Vector4d points4d [1000];
      Vector4d *points4d_ptrs [1000];
      for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]);
      Hyperplane<double,4> coeffs5d;
      makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01);
      CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05));
      CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01));
      CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002));
    }
#endif
#ifdef EIGEN_TEST_PART_4
    {
      VectorXcd *points11cd_ptrs[1000];
      for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11);
      Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11);
      makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01);
      CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025));
      CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006));
      delete coeffs12cd;
      for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i];
    }
#endif
  }
}