aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/eigen2/eigen2_packetmath.cpp
blob: 11384b1a8c822892401e0eb7052549f388d1747a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"

// using namespace Eigen;

template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size)
{
  for (int i=0; i<size; ++i)
    if (!ei_isApprox(a[i],b[i])) return false;
  return true;
}

#define CHECK_CWISE(REFOP, POP) { \
  for (int i=0; i<PacketSize; ++i) \
    ref[i] = REFOP(data1[i], data1[i+PacketSize]); \
  ei_pstore(data2, POP(ei_pload(data1), ei_pload(data1+PacketSize))); \
  VERIFY(areApprox(ref, data2, PacketSize) && #POP); \
}

#define REF_ADD(a,b) ((a)+(b))
#define REF_SUB(a,b) ((a)-(b))
#define REF_MUL(a,b) ((a)*(b))
#define REF_DIV(a,b) ((a)/(b))

namespace std {

template<> const complex<float>& min(const complex<float>& a, const complex<float>& b)
{ return a.real() < b.real() ? a : b; }

template<> const complex<float>& max(const complex<float>& a, const complex<float>& b)
{ return a.real() < b.real() ? b : a; }

}

template<typename Scalar> void packetmath()
{
  typedef typename ei_packet_traits<Scalar>::type Packet;
  const int PacketSize = ei_packet_traits<Scalar>::size;

  const int size = PacketSize*4;
  EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4];
  EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4];
  EIGEN_ALIGN_128 Packet packets[PacketSize*2];
  EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4];
  for (int i=0; i<size; ++i)
  {
    data1[i] = ei_random<Scalar>();
    data2[i] = ei_random<Scalar>();
  }

  ei_pstore(data2, ei_pload(data1));
  VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store");

  for (int offset=0; offset<PacketSize; ++offset)
  {
    ei_pstore(data2, ei_ploadu(data1+offset));
    VERIFY(areApprox(data1+offset, data2, PacketSize) && "ei_ploadu");
  }

  for (int offset=0; offset<PacketSize; ++offset)
  {
    ei_pstoreu(data2+offset, ei_pload(data1));
    VERIFY(areApprox(data1, data2+offset, PacketSize) && "ei_pstoreu");
  }

  for (int offset=0; offset<PacketSize; ++offset)
  {
    packets[0] = ei_pload(data1);
    packets[1] = ei_pload(data1+PacketSize);
         if (offset==0) ei_palign<0>(packets[0], packets[1]);
    else if (offset==1) ei_palign<1>(packets[0], packets[1]);
    else if (offset==2) ei_palign<2>(packets[0], packets[1]);
    else if (offset==3) ei_palign<3>(packets[0], packets[1]);
    ei_pstore(data2, packets[0]);

    for (int i=0; i<PacketSize; ++i)
      ref[i] = data1[i+offset];

    typedef Matrix<Scalar, PacketSize, 1> Vector;
    VERIFY(areApprox(ref, data2, PacketSize) && "ei_palign");
  }

  CHECK_CWISE(REF_ADD,  ei_padd);
  CHECK_CWISE(REF_SUB,  ei_psub);
  CHECK_CWISE(REF_MUL,  ei_pmul);
  #ifndef EIGEN_VECTORIZE_ALTIVEC
  if (!ei_is_same_type<Scalar,int>::ret)
    CHECK_CWISE(REF_DIV,  ei_pdiv);
  #endif
  CHECK_CWISE(std::min, ei_pmin);
  CHECK_CWISE(std::max, ei_pmax);

  for (int i=0; i<PacketSize; ++i)
    ref[i] = data1[0];
  ei_pstore(data2, ei_pset1(data1[0]));
  VERIFY(areApprox(ref, data2, PacketSize) && "ei_pset1");

  VERIFY(ei_isApprox(data1[0], ei_pfirst(ei_pload(data1))) && "ei_pfirst");

  ref[0] = 0;
  for (int i=0; i<PacketSize; ++i)
    ref[0] += data1[i];
  VERIFY(ei_isApprox(ref[0], ei_predux(ei_pload(data1))) && "ei_predux");

  for (int j=0; j<PacketSize; ++j)
  {
    ref[j] = 0;
    for (int i=0; i<PacketSize; ++i)
      ref[j] += data1[i+j*PacketSize];
    packets[j] = ei_pload(data1+j*PacketSize);
  }
  ei_pstore(data2, ei_preduxp(packets));
  VERIFY(areApprox(ref, data2, PacketSize) && "ei_preduxp");
}

void test_eigen2_packetmath()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( packetmath<float>() );
    CALL_SUBTEST_2( packetmath<double>() );
    CALL_SUBTEST_3( packetmath<int>() );
    CALL_SUBTEST_4( packetmath<std::complex<float> >() );
  }
}