aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/eigen2/eigen2_array.cpp
blob: c1ff40ce7db6bd4808dc5c5da7531938380477fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <Eigen/Array>

template<typename MatrixType> void array(const MatrixType& m)
{
  /* this test covers the following files:
     Array.cpp
  */

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  int rows = m.rows();
  int cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols);

  Scalar  s1 = ei_random<Scalar>(),
          s2 = ei_random<Scalar>();

  // scalar addition
  VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
  VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
  VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
  m3 = m1;
  m3.cwise() += s2;
  VERIFY_IS_APPROX(m3, m1.cwise() + s2);
  m3 = m1;
  m3.cwise() -= s1;
  VERIFY_IS_APPROX(m3, m1.cwise() - s1);

  // reductions
  VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
  VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
  if (!ei_isApprox(m1.sum(), (m1+m2).sum()))
    VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
}

template<typename MatrixType> void comparisons(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  int rows = m.rows();
  int cols = m.cols();

  int r = ei_random<int>(0, rows-1),
      c = ei_random<int>(0, cols-1);

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols);

  VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all());
  VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all());
  if (rows*cols>1)
  {
    m3 = m1;
    m3(r,c) += 1;
    VERIFY(! (m1.cwise() < m3).all() );
    VERIFY(! (m1.cwise() > m3).all() );
  }
  
  // comparisons to scalar
  VERIFY( (m1.cwise() != (m1(r,c)+1) ).any() );
  VERIFY( (m1.cwise() > (m1(r,c)-1) ).any() );
  VERIFY( (m1.cwise() < (m1(r,c)+1) ).any() );
  VERIFY( (m1.cwise() == m1(r,c) ).any() );
  
  // test Select
  VERIFY_IS_APPROX( (m1.cwise()<m2).select(m1,m2), m1.cwise().min(m2) );
  VERIFY_IS_APPROX( (m1.cwise()>m2).select(m1,m2), m1.cwise().max(m2) );
  Scalar mid = (m1.cwise().abs().minCoeff() + m1.cwise().abs().maxCoeff())/Scalar(2);
  for (int j=0; j<cols; ++j)
  for (int i=0; i<rows; ++i)
    m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j);
  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
                        .select(MatrixType::Zero(rows,cols),m1), m3);
  // shorter versions:
  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
                        .select(0,m1), m3);
  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()>=MatrixType::Constant(rows,cols,mid))
                        .select(m1,0), m3);
  // even shorter version:
  VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<mid).select(0,m1), m3);
  
  // count
  VERIFY(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).count() == rows*cols);
  VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).colwise().count().template cast<int>(), RowVectorXi::Constant(cols,rows));
  VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).rowwise().count().template cast<int>(), VectorXi::Constant(rows, cols));
}

template<typename VectorType> void lpNorm(const VectorType& v)
{
  VectorType u = VectorType::Random(v.size());

  VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwise().abs().maxCoeff());
  VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum());
  VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum()));
  VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum());
}

void test_eigen2_array()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( array(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( array(Matrix2f()) );
    CALL_SUBTEST_3( array(Matrix4d()) );
    CALL_SUBTEST_4( array(MatrixXcf(3, 3)) );
    CALL_SUBTEST_5( array(MatrixXf(8, 12)) );
    CALL_SUBTEST_6( array(MatrixXi(8, 12)) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( comparisons(Matrix2f()) );
    CALL_SUBTEST_3( comparisons(Matrix4d()) );
    CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) );
    CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( lpNorm(Vector2f()) );
    CALL_SUBTEST_3( lpNorm(Vector3d()) );
    CALL_SUBTEST_4( lpNorm(Vector4f()) );
    CALL_SUBTEST_5( lpNorm(VectorXf(16)) );
    CALL_SUBTEST_7( lpNorm(VectorXcd(10)) );
  }
}