1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
// test compilation with both a struct and a class...
struct MyStruct : WithAlignedOperatorNew
{
char dummychar;
Vector4f avec;
};
class MyClassA : public WithAlignedOperatorNew
{
public:
char dummychar;
Vector4f avec;
};
// ..as well as with some other base classes
class MyBaseClass
{
public:
char dummychar;
float afloat;
};
class MyClassB : public WithAlignedOperatorNew, public MyBaseClass
{
public:
char dummychar;
Vector4f avec;
};
class MyClassC : public MyBaseClass, public WithAlignedOperatorNew
{
public:
char dummychar;
Vector4f avec;
};
template<typename T> void check_dynaligned()
{
T* obj = new T;
VERIFY(size_t(obj)%16==0);
delete obj;
}
void test_dynalloc()
{
#ifdef EIGEN_VECTORIZE
for (int i=0; i<g_repeat*100; ++i)
{
CALL_SUBTEST( check_dynaligned<Vector4f>() );
CALL_SUBTEST( check_dynaligned<Vector2d>() );
CALL_SUBTEST( check_dynaligned<Matrix4f>() );
CALL_SUBTEST( check_dynaligned<Vector4d>() );
CALL_SUBTEST( check_dynaligned<Vector4i>() );
}
// check static allocation, who knows ?
{
MyStruct foo0; VERIFY(size_t(foo0.avec.data())%16==0);
MyClassA fooA; VERIFY(size_t(fooA.avec.data())%16==0);
MyClassB fooB; VERIFY(size_t(fooB.avec.data())%16==0);
MyClassC fooC; VERIFY(size_t(fooC.avec.data())%16==0);
}
// dynamic allocation, single object
for (int i=0; i<g_repeat*100; ++i)
{
MyStruct *foo0 = new MyStruct(); VERIFY(size_t(foo0->avec.data())%16==0);
MyClassA *fooA = new MyClassA(); VERIFY(size_t(fooA->avec.data())%16==0);
MyClassB *fooB = new MyClassB(); VERIFY(size_t(fooB->avec.data())%16==0);
MyClassC *fooC = new MyClassC(); VERIFY(size_t(fooC->avec.data())%16==0);
delete foo0;
delete fooA;
delete fooB;
delete fooC;
}
// dynamic allocation, array
const int N = 10;
for (int i=0; i<g_repeat*100; ++i)
{
MyStruct *foo0 = new MyStruct[N]; VERIFY(size_t(foo0->avec.data())%16==0);
MyClassA *fooA = new MyClassA[N]; VERIFY(size_t(fooA->avec.data())%16==0);
MyClassB *fooB = new MyClassB[N]; VERIFY(size_t(fooB->avec.data())%16==0);
MyClassC *fooC = new MyClassC[N]; VERIFY(size_t(fooC->avec.data())%16==0);
delete[] foo0;
delete[] fooA;
delete[] fooB;
delete[] fooC;
}
// std::vector
for (int i=0; i<g_repeat*100; ++i)
{
std::vector<Vector4f, ei_new_allocator<Vector4f> > vecs(N);
for (int j=0; j<N; ++j)
{
VERIFY(size_t(vecs[j].data())%16==0);
}
std::vector<MyStruct,ei_new_allocator<MyStruct> > foos(N);
for (int j=0; j<N; ++j)
{
VERIFY(size_t(foos[j].avec.data())%16==0);
}
}
#endif // EIGEN_VECTORIZE
}
|