aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/cholesky.cpp
blob: 4bf28ef681c8e63f875177a14260b2902c7f93e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/LU>

template<typename MatrixType> void cholesky(const MatrixType& m)
{
  /* this test covers the following files:
     Cholesky.h CholeskyWithoutSquareRoot.h
  */
  int rows = m.rows();
  int cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  MatrixType a = MatrixType::Random(rows,cols);
  VectorType vecB = VectorType::Random(rows);
  MatrixType matB = MatrixType::Random(rows,cols);
  SquareMatrixType covMat =  a * a.adjoint();

  CholeskyWithoutSquareRoot<SquareMatrixType> cholnosqrt(covMat);
  VERIFY_IS_APPROX(covMat, cholnosqrt.matrixL() * cholnosqrt.vectorD().asDiagonal() * cholnosqrt.matrixL().adjoint());
  VERIFY_IS_APPROX(covMat * cholnosqrt.solve(vecB), vecB);
  VERIFY_IS_APPROX(covMat * cholnosqrt.solve(matB), matB);

  Cholesky<SquareMatrixType> chol(covMat);
  VERIFY_IS_APPROX(covMat, chol.matrixL() * chol.matrixL().adjoint());
  VERIFY_IS_APPROX(covMat * chol.solve(vecB), vecB);
  VERIFY_IS_APPROX(covMat * chol.solve(matB), matB);
}

void test_cholesky()
{
  for(int i = 0; i < 1; i++) {
    CALL_SUBTEST( cholesky(Matrix3f()) );
    CALL_SUBTEST( cholesky(Matrix4d()) );
    CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
    CALL_SUBTEST( cholesky(MatrixXf(85,85)) );
  }
}