aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/basicstuff.cpp
blob: 7670983412a6b797361a1534303d815b307b67a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#define EIGEN_NO_STATIC_ASSERT

#include "main.h"

template<typename MatrixType> void basicStuff(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;

  Index rows = m.rows();
  Index cols = m.cols();

  // this test relies a lot on Random.h, and there's not much more that we can do
  // to test it, hence I consider that we will have tested Random.h
  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols),
             mzero = MatrixType::Zero(rows, cols),
             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
                              ::Identity(rows, rows),
             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
  VectorType v1 = VectorType::Random(rows),
             v2 = VectorType::Random(rows),
             vzero = VectorType::Zero(rows);
  SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);

  Scalar x = internal::random<Scalar>();

  Index r = internal::random<Index>(0, rows-1),
        c = internal::random<Index>(0, cols-1);

  m1.coeffRef(r,c) = x;
  VERIFY_IS_APPROX(x, m1.coeff(r,c));
  m1(r,c) = x;
  VERIFY_IS_APPROX(x, m1(r,c));
  v1.coeffRef(r) = x;
  VERIFY_IS_APPROX(x, v1.coeff(r));
  v1(r) = x;
  VERIFY_IS_APPROX(x, v1(r));
  v1[r] = x;
  VERIFY_IS_APPROX(x, v1[r]);

  VERIFY_IS_APPROX(               v1,    v1);
  VERIFY_IS_NOT_APPROX(           v1,    2*v1);
  VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
  if(!NumTraits<Scalar>::IsInteger)
    VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.norm());
  VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
  VERIFY_IS_APPROX(               vzero, v1-v1);
  VERIFY_IS_APPROX(               m1,    m1);
  VERIFY_IS_NOT_APPROX(           m1,    2*m1);
  VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
  VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
  VERIFY_IS_APPROX(               mzero, m1-m1);

  // always test operator() on each read-only expression class,
  // in order to check const-qualifiers.
  // indeed, if an expression class (here Zero) is meant to be read-only,
  // hence has no _write() method, the corresponding MatrixBase method (here zero())
  // should return a const-qualified object so that it is the const-qualified
  // operator() that gets called, which in turn calls _read().
  VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));

  // now test copying a row-vector into a (column-)vector and conversely.
  square.col(r) = square.row(r).eval();
  Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
  Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
  rv = square.row(r);
  cv = square.col(r);
  
  VERIFY_IS_APPROX(rv, cv.transpose());

  if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
  {
    VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
  }

  if(cols!=1 && rows!=1)
  {
    VERIFY_RAISES_ASSERT(m1[0]);
    VERIFY_RAISES_ASSERT((m1+m1)[0]);
  }

  VERIFY_IS_APPROX(m3 = m1,m1);
  MatrixType m4;
  VERIFY_IS_APPROX(m4 = m1,m1);

  m3.real() = m1.real();
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());

  // check == / != operators
  VERIFY(m1==m1);
  VERIFY(m1!=m2);
  VERIFY(!(m1==m2));
  VERIFY(!(m1!=m1));
  m1 = m2;
  VERIFY(m1==m2);
  VERIFY(!(m1!=m2));
  
  // check automatic transposition
  sm2.setZero();
  for(typename MatrixType::Index i=0;i<rows;++i)
    sm2.col(i) = sm1.row(i);
  VERIFY_IS_APPROX(sm2,sm1.transpose());
  
  sm2.setZero();
  for(typename MatrixType::Index i=0;i<rows;++i)
    sm2.col(i).noalias() = sm1.row(i);
  VERIFY_IS_APPROX(sm2,sm1.transpose());
  
  sm2.setZero();
  for(typename MatrixType::Index i=0;i<rows;++i)
    sm2.col(i).noalias() += sm1.row(i);
  VERIFY_IS_APPROX(sm2,sm1.transpose());
  
  sm2.setZero();
  for(typename MatrixType::Index i=0;i<rows;++i)
    sm2.col(i).noalias() -= sm1.row(i);
  VERIFY_IS_APPROX(sm2,-sm1.transpose());
}

template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;

  Index rows = m.rows();
  Index cols = m.cols();

  Scalar s1 = internal::random<Scalar>(),
         s2 = internal::random<Scalar>();

  VERIFY(internal::real(s1)==internal::real_ref(s1));
  VERIFY(internal::imag(s1)==internal::imag_ref(s1));
  internal::real_ref(s1) = internal::real(s2);
  internal::imag_ref(s1) = internal::imag(s2);
  VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
  // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.

  RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
                 rm2 = RealMatrixType::Random(rows,cols);
  MatrixType cm(rows,cols);
  cm.real() = rm1;
  cm.imag() = rm2;
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
  rm1.setZero();
  rm2.setZero();
  rm1 = cm.real();
  rm2 = cm.imag();
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
  VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
  cm.real().setZero();
  VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
  VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
}

#ifdef EIGEN_TEST_PART_2
void casting()
{
  Matrix4f m = Matrix4f::Random(), m2;
  Matrix4d n = m.cast<double>();
  VERIFY(m.isApprox(n.cast<float>()));
  m2 = m.cast<float>(); // check the specialization when NewType == Type
  VERIFY(m.isApprox(m2));
}
#endif

template <typename Scalar>
void fixedSizeMatrixConstruction()
{
  const Scalar raw[3] = {1,2,3};
  Matrix<Scalar,3,1> m(raw);
  Array<Scalar,3,1> a(raw);
  VERIFY(m(0) == 1);
  VERIFY(m(1) == 2);
  VERIFY(m(2) == 3);
  VERIFY(a(0) == 1);
  VERIFY(a(1) == 2);
  VERIFY(a(2) == 3);  
}

void test_basicstuff()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( basicStuff(Matrix4d()) );
    CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,100), internal::random<int>(1,100))) );
    CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,100), internal::random<int>(1,100))) );
    CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,100), internal::random<int>(1,100))) );
    CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
    CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,100),internal::random<int>(1,100))) );

    CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,100), internal::random<int>(1,100))) );
    CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,100), internal::random<int>(1,100))) );
  }

  CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
  CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());

  CALL_SUBTEST_2(casting());
}