1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template<typename MatrixType> void basicStuff(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
Index rows = m.rows();
Index cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
VectorType v1 = VectorType::Random(rows),
vzero = VectorType::Zero(rows);
SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
Scalar x = 0;
while(x == Scalar(0)) x = internal::random<Scalar>();
Index r = internal::random<Index>(0, rows-1),
c = internal::random<Index>(0, cols-1);
m1.coeffRef(r,c) = x;
VERIFY_IS_APPROX(x, m1.coeff(r,c));
m1(r,c) = x;
VERIFY_IS_APPROX(x, m1(r,c));
v1.coeffRef(r) = x;
VERIFY_IS_APPROX(x, v1.coeff(r));
v1(r) = x;
VERIFY_IS_APPROX(x, v1(r));
v1[r] = x;
VERIFY_IS_APPROX(x, v1[r]);
// test fetching with various index types.
Index r1 = internal::random<Index>(0, numext::mini(Index(127),rows-1));
x = v1(static_cast<char>(r1));
x = v1(static_cast<signed char>(r1));
x = v1(static_cast<unsigned char>(r1));
x = v1(static_cast<signed short>(r1));
x = v1(static_cast<unsigned short>(r1));
x = v1(static_cast<signed int>(r1));
x = v1(static_cast<unsigned int>(r1));
x = v1(static_cast<signed long>(r1));
x = v1(static_cast<unsigned long>(r1));
#if EIGEN_HAS_CXX11
x = v1(static_cast<long long int>(r1));
x = v1(static_cast<unsigned long long int>(r1));
#endif
VERIFY_IS_APPROX( v1, v1);
VERIFY_IS_NOT_APPROX( v1, 2*v1);
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm());
VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
VERIFY_IS_APPROX( vzero, v1-v1);
VERIFY_IS_APPROX( m1, m1);
VERIFY_IS_NOT_APPROX( m1, 2*m1);
VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
VERIFY_IS_APPROX( mzero, m1-m1);
// always test operator() on each read-only expression class,
// in order to check const-qualifiers.
// indeed, if an expression class (here Zero) is meant to be read-only,
// hence has no _write() method, the corresponding MatrixBase method (here zero())
// should return a const-qualified object so that it is the const-qualified
// operator() that gets called, which in turn calls _read().
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
// now test copying a row-vector into a (column-)vector and conversely.
square.col(r) = square.row(r).eval();
Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
rv = square.row(r);
cv = square.col(r);
VERIFY_IS_APPROX(rv, cv.transpose());
if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
{
VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
}
if(cols!=1 && rows!=1)
{
VERIFY_RAISES_ASSERT(m1[0]);
VERIFY_RAISES_ASSERT((m1+m1)[0]);
}
VERIFY_IS_APPROX(m3 = m1,m1);
MatrixType m4;
VERIFY_IS_APPROX(m4 = m1,m1);
m3.real() = m1.real();
VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
// check == / != operators
VERIFY(m1==m1);
VERIFY(m1!=m2);
VERIFY(!(m1==m2));
VERIFY(!(m1!=m1));
m1 = m2;
VERIFY(m1==m2);
VERIFY(!(m1!=m2));
// check automatic transposition
sm2.setZero();
for(Index i=0;i<rows;++i)
sm2.col(i) = sm1.row(i);
VERIFY_IS_APPROX(sm2,sm1.transpose());
sm2.setZero();
for(Index i=0;i<rows;++i)
sm2.col(i).noalias() = sm1.row(i);
VERIFY_IS_APPROX(sm2,sm1.transpose());
sm2.setZero();
for(Index i=0;i<rows;++i)
sm2.col(i).noalias() += sm1.row(i);
VERIFY_IS_APPROX(sm2,sm1.transpose());
sm2.setZero();
for(Index i=0;i<rows;++i)
sm2.col(i).noalias() -= sm1.row(i);
VERIFY_IS_APPROX(sm2,-sm1.transpose());
// check ternary usage
{
bool b = internal::random<int>(0,10)>5;
m3 = b ? m1 : m2;
if(b) VERIFY_IS_APPROX(m3,m1);
else VERIFY_IS_APPROX(m3,m2);
m3 = b ? -m1 : m2;
if(b) VERIFY_IS_APPROX(m3,-m1);
else VERIFY_IS_APPROX(m3,m2);
m3 = b ? m1 : -m2;
if(b) VERIFY_IS_APPROX(m3,m1);
else VERIFY_IS_APPROX(m3,-m2);
}
}
template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
Index rows = m.rows();
Index cols = m.cols();
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>();
VERIFY(numext::real(s1)==numext::real_ref(s1));
VERIFY(numext::imag(s1)==numext::imag_ref(s1));
numext::real_ref(s1) = numext::real(s2);
numext::imag_ref(s1) = numext::imag(s2);
VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
// extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
rm2 = RealMatrixType::Random(rows,cols);
MatrixType cm(rows,cols);
cm.real() = rm1;
cm.imag() = rm2;
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
rm1.setZero();
rm2.setZero();
rm1 = cm.real();
rm2 = cm.imag();
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
cm.real().setZero();
VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
}
#ifdef EIGEN_TEST_PART_2
void casting()
{
Matrix4f m = Matrix4f::Random(), m2;
Matrix4d n = m.cast<double>();
VERIFY(m.isApprox(n.cast<float>()));
m2 = m.cast<float>(); // check the specialization when NewType == Type
VERIFY(m.isApprox(m2));
}
#endif
template <typename Scalar>
void fixedSizeMatrixConstruction()
{
Scalar raw[4];
for(int k=0; k<4; ++k)
raw[k] = internal::random<Scalar>();
{
Matrix<Scalar,4,1> m(raw);
Array<Scalar,4,1> a(raw);
for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
}
{
Matrix<Scalar,3,1> m(raw);
Array<Scalar,3,1> a(raw);
for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
}
{
Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
Array<Scalar,2,1> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
}
{
Matrix<Scalar,1,2> m(raw),
m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
m3( (int(raw[0])), (int(raw[1])) ),
m4( (float(raw[0])), (float(raw[1])) );
Array<Scalar,1,2> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
}
{
Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
VERIFY(m(0) == raw[0]);
VERIFY(a(0) == raw[0]);
VERIFY(m1(0) == raw[0]);
VERIFY(a1(0) == raw[0]);
VERIFY(m2(0) == DenseIndex(raw[0]));
VERIFY(a2(0) == DenseIndex(raw[0]));
VERIFY(m3(0) == int(raw[0]));
VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
}
}
void test_basicstuff()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( basicStuff(Matrix4d()) );
CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
CALL_SUBTEST_2(casting());
}
|