aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/basicstuff.cpp
blob: 03f5557491138b02dc0f5a6580ae8545f35c1287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.

#include "main.h"

namespace Eigen {

template<typename MatrixType> void basicStuff(const MatrixType& m)
{
  /* this test covers the following files:
     1) Explicitly (see comments below):
     Random.h Zero.h Identity.h Fuzzy.h Sum.h Difference.h
     Opposite.h Product.h ScalarMultiple.h FromArray.h
     
     2) Implicitly (the core stuff):
     MatrixBase.h Matrix.h MatrixStorage.h CopyHelper.h MatrixRef.h
     NumTraits.h Util.h
  */

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  int rows = m.rows();
  int cols = m.cols();
  
  // this test relies a lot on Random.h, and there's not much more that we can do
  // to test it, hence I consider that we will have tested Random.h
  MatrixType m1 = MatrixType::random(rows, cols),
             m2 = MatrixType::random(rows, cols),
             m3(rows, cols),
             mzero = MatrixType::zero(rows, cols),
             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
                              ::identity(rows),
             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
                              ::random(rows, rows);
  VectorType v1 = VectorType::random(rows),
             v2 = VectorType::random(rows),
             vzero = VectorType::zero(rows);

  Scalar s1 = random<Scalar>(),
         s2 = random<Scalar>();
  
  // test Fuzzy.h and Zero.h.
  VERIFY_IS_APPROX(               v1,    v1);
  VERIFY_IS_NOT_APPROX(           v1,    2*v1);
  VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
  if(NumTraits<Scalar>::HasFloatingPoint)
    VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.norm());
  VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
  VERIFY_IS_APPROX(               vzero, v1-v1);
  VERIFY_IS_APPROX(               m1,    m1);
  VERIFY_IS_NOT_APPROX(           m1,    2*m1);
  VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
  VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
  VERIFY_IS_APPROX(               mzero, m1-m1);
  
  // test the linear structure, i.e. the following files:
  // Sum.h Difference.h Opposite.h ScalarMultiple.h
  VERIFY_IS_APPROX(-(-m1),                  m1);
  VERIFY_IS_APPROX(m1+m1,                   2*m1);
  VERIFY_IS_APPROX(m1+m2-m1,                m2);
  VERIFY_IS_APPROX(-m2+m1+m2,               m1);
  VERIFY_IS_APPROX(m1*s1,                   s1*m1);
  VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
  VERIFY_IS_APPROX((s1+s2)*m1,              m1*s1+m1*s2);
  VERIFY_IS_APPROX((m1-m2)*s1,              s1*m1-s1*m2);
  VERIFY_IS_APPROX((s1-s2)*m1,              m1*s1-m1*s2);
  VERIFY_IS_APPROX((-m1+m2)*s1,             -s1*m1+s1*m2);
  VERIFY_IS_APPROX((-s1+s2)*m1,             -m1*s1+m1*s2);
  m3 = m2; m3 += m1;
  VERIFY_IS_APPROX(m3,                      m1+m2);
  m3 = m2; m3 -= m1;
  VERIFY_IS_APPROX(m3,                      m2-m1);
  m3 = m2; m3 *= s1;
  VERIFY_IS_APPROX(m3,                      s1*m2);
  if(NumTraits<Scalar>::HasFloatingPoint)
  {
    m3 = m2; m3 /= s1;
    VERIFY_IS_APPROX(m3,                    m2/s1);
  }
  
  // begin testing Product.h: only associativity for now
  // (we use Transpose.h but this doesn't count as a test for it)
  VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
  m3 = m1;
  m3 *= (m1.transpose() * m2);
  VERIFY_IS_APPROX(m3,                      m1*(m1.transpose()*m2));
  VERIFY_IS_APPROX(m3,                      m1.lazyProduct(m1.transpose()*m2));
  
  // continue testing Product.h: distributivity
  VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
  VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);
  
  // continue testing Product.h: compatibility with ScalarMultiple.h
  VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
  VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));
  
  // continue testing Product.h: lazyProduct
  VERIFY_IS_APPROX(square.lazyProduct(m1),  square*m1);
  
  // test Product.h together with Identity.h. This does test Identity.h.
  VERIFY_IS_APPROX(m1,                      identity*m1);
  VERIFY_IS_APPROX(v1,                      identity*v1);
  
  // test FromArray.h
  Scalar* array1 = new Scalar[rows];
  Scalar* array2 = new Scalar[rows];
  Matrix<Scalar, Dynamic, 1>::fromArray(array1, rows) = Matrix<Scalar, Dynamic, 1>::random(rows);
  Matrix<Scalar, Dynamic, 1>::fromArray(array2, rows)
    = Matrix<Scalar, Dynamic, 1>::fromArray(array1, rows);
  Matrix<Scalar, Dynamic, 1> ma1 = Matrix<Scalar, Dynamic, 1>::fromArray(array1, rows);
  Matrix<Scalar, Dynamic, 1> ma2 = Matrix<Scalar, Dynamic, 1>::fromArray(array2, rows);
  VERIFY_IS_APPROX(ma1, ma2);
  delete[] array1;
  delete[] array2;
}

void EigenTest::testBasicStuff()
{
  REPEAT {
    basicStuff(Matrix<float, 1, 1>());
    basicStuff(Matrix4cd());
    basicStuff(MatrixXcf(3, 3));
    basicStuff(MatrixXi(8, 12));
    basicStuff(MatrixXd(20, 20));
  }
}

} // namespace Eigen