aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/array_reverse.cpp
blob: 1461900c31982bb727cb992ecd82d898fb8527e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <iostream>

using namespace std;

template<typename MatrixType> void reverse(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  Index rows = m.rows();
  Index cols = m.cols();

  // this test relies a lot on Random.h, and there's not much more that we can do
  // to test it, hence I consider that we will have tested Random.h
  MatrixType m1 = MatrixType::Random(rows, cols);
  VectorType v1 = VectorType::Random(rows);

  MatrixType m1_r = m1.reverse();
  // Verify that MatrixBase::reverse() works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j));
    }
  }

  Reverse<MatrixType> m1_rd(m1);
  // Verify that a Reverse default (in both directions) of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j));
    }
  }

  Reverse<MatrixType, BothDirections> m1_rb(m1);
  // Verify that a Reverse in both directions of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j));
    }
  }

  Reverse<MatrixType, Vertical> m1_rv(m1);
  // Verify that a Reverse in the vertical directions of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j));
    }
  }

  Reverse<MatrixType, Horizontal> m1_rh(m1);
  // Verify that a Reverse in the horizontal directions of an expression works
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j));
    }
  }

  VectorType v1_r = v1.reverse();
  // Verify that a VectorType::reverse() of an expression works
  for ( int i = 0; i < rows; i++ ) {
    VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i));
  }

  MatrixType m1_cr = m1.colwise().reverse();
  // Verify that PartialRedux::reverse() works (for colwise())
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j));
    }
  }

  MatrixType m1_rr = m1.rowwise().reverse();
  // Verify that PartialRedux::reverse() works (for rowwise())
  for ( int i = 0; i < rows; i++ ) {
    for ( int j = 0; j < cols; j++ ) {
      VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j));
    }
  }

  Scalar x = ei_random<Scalar>();

  Index r = ei_random<Index>(0, rows-1),
        c = ei_random<Index>(0, cols-1);

  m1.reverse()(r, c) = x;
  VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c));

  /*
  m1.colwise().reverse()(r, c) = x;
  VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));

  m1.rowwise().reverse()(r, c) = x;
  VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
  */
}

void test_array_reverse()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( reverse(Matrix2f()) );
    CALL_SUBTEST_3( reverse(Matrix4f()) );
    CALL_SUBTEST_4( reverse(Matrix4d()) );
    CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) );
    CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) );
    CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) );
    CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) );
    CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(6,3)) );
  }
#ifdef EIGEN_TEST_PART_3
  Vector4f x; x << 1, 2, 3, 4;
  Vector4f y; y << 4, 3, 2, 1;
  VERIFY(x.reverse()[1] == 3);
  VERIFY(x.reverse() == y);
#endif
}