aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/array.cpp
blob: d05c4f72e0b6047fe5ba52ba53640029080bb0b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <Eigen/Array>

template<typename MatrixType> void scalarAdd(const MatrixType& m)
{
  /* this test covers the following files:
     Array.cpp
  */

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  int rows = m.rows();
  int cols = m.cols();

  MatrixType m1 = MatrixType::random(rows, cols),
             m2 = MatrixType::random(rows, cols),
             m3(rows, cols);

  Scalar  s1 = ei_random<Scalar>(),
          s2 = ei_random<Scalar>();

  VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
  VERIFY_IS_APPROX(m1.array() + s1, MatrixType::constant(rows,cols,s1) + m1);
  VERIFY_IS_APPROX((m1*Scalar(2)).array() - s2, (m1+m1) - MatrixType::constant(rows,cols,s2) );
  m3 = m1;
  m3.array() += s2;
  VERIFY_IS_APPROX(m3, m1.array() + s2);
  m3 = m1;
  m3.array() -= s1;
  VERIFY_IS_APPROX(m3, m1.array() - s1);
}

template<typename MatrixType> void comparisons(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  int rows = m.rows();
  int cols = m.cols();

  int r = ei_random<int>(0, rows-1),
      c = ei_random<int>(0, cols-1);

  MatrixType m1 = MatrixType::random(rows, cols),
             m2 = MatrixType::random(rows, cols),
             m3(rows, cols);

  VERIFY((m1.array() + Scalar(1)).array() > m1.array());
  VERIFY((m1.array() - Scalar(1)).array() < m1.array());
  if (rows*cols>1)
  {
    m3 = m1;
    m3(r,c) += 1;
    VERIFY(! (m1.array() < m3.array()) );
    VERIFY(! (m1.array() > m3.array()) );
  }
}

void test_array()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( scalarAdd(Matrix<float, 1, 1>()) );
    CALL_SUBTEST( scalarAdd(Matrix2f()) );
    CALL_SUBTEST( scalarAdd(Matrix4d()) );
    CALL_SUBTEST( scalarAdd(MatrixXcf(3, 3)) );
    CALL_SUBTEST( scalarAdd(MatrixXf(8, 12)) );
    CALL_SUBTEST( scalarAdd(MatrixXi(8, 12)) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST( comparisons(Matrix<float, 1, 1>()) );
    CALL_SUBTEST( comparisons(Matrix2f()) );
    CALL_SUBTEST( comparisons(Matrix4d()) );
    CALL_SUBTEST( comparisons(MatrixXf(8, 12)) );
    CALL_SUBTEST( comparisons(MatrixXi(8, 12)) );
  }
}