aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/array.cpp
blob: beaa622217117b82aabb7e3fbf104fe7f4eab462 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

template<typename ArrayType> void array(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;
  typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
  typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;

  Index rows = m.rows();
  Index cols = m.cols(); 

  ArrayType m1 = ArrayType::Random(rows, cols),
             m2 = ArrayType::Random(rows, cols),
             m3(rows, cols);
  ArrayType m4 = m1; // copy constructor
  VERIFY_IS_APPROX(m1, m4);

  ColVectorType cv1 = ColVectorType::Random(rows);
  RowVectorType rv1 = RowVectorType::Random(cols);

  Scalar  s1 = internal::random<Scalar>(),
          s2 = internal::random<Scalar>();

  // scalar addition
  VERIFY_IS_APPROX(m1 + s1, s1 + m1);
  VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
  VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
  VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
  VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
  VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
  m3 = m1;
  m3 += s2;
  VERIFY_IS_APPROX(m3, m1 + s2);
  m3 = m1;
  m3 -= s1;
  VERIFY_IS_APPROX(m3, m1 - s1);  
  
  // scalar operators via Maps
  m3 = m1;
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
  VERIFY_IS_APPROX(m1, m3 - m2);
  
  m3 = m1;
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
  VERIFY_IS_APPROX(m1, m3 + m2);
  
  m3 = m1;
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
  VERIFY_IS_APPROX(m1, m3 * m2);
  
  m3 = m1;
  m2 = ArrayType::Random(rows,cols);
  m2 = (m2==0).select(1,m2);
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());  
  VERIFY_IS_APPROX(m1, m3 / m2);

  // reductions
  VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
  VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
  using std::abs;
  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
  if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
      VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));

  // vector-wise ops
  m3 = m1;
  VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
  m3 = m1;
  VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
  m3 = m1;
  VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
  m3 = m1;
  VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
  
  // Conversion from scalar
  VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1));
  VERIFY_IS_APPROX((m3 = 1),  ArrayType::Constant(rows,cols,1));
  VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1),  ArrayType::Constant(rows,cols,1));
  typedef Array<Scalar,
                ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime,
                ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime,
                ArrayType::Options> FixedArrayType;
  FixedArrayType f1(s1);
  VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
  FixedArrayType f2(numext::real(s1));
  VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
  FixedArrayType f3((int)100*numext::real(s1));
  VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
  f1.setRandom();
  FixedArrayType f4(f1.data());
  VERIFY_IS_APPROX(f4, f1);
  
  // Check possible conflicts with 1D ctor
  typedef Array<Scalar, Dynamic, 1> OneDArrayType;
  OneDArrayType o1(rows);
  VERIFY(o1.size()==rows);
  OneDArrayType o4((int)rows);
  VERIFY(o4.size()==rows);
}

template<typename ArrayType> void comparisons(const ArrayType& m)
{
  using std::abs;
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  Index rows = m.rows();
  Index cols = m.cols();

  Index r = internal::random<Index>(0, rows-1),
        c = internal::random<Index>(0, cols-1);

  ArrayType m1 = ArrayType::Random(rows, cols),
            m2 = ArrayType::Random(rows, cols),
            m3(rows, cols),
            m4 = m1;
  
  m4 = (m4.abs()==Scalar(0)).select(1,m4);

  VERIFY(((m1 + Scalar(1)) > m1).all());
  VERIFY(((m1 - Scalar(1)) < m1).all());
  if (rows*cols>1)
  {
    m3 = m1;
    m3(r,c) += 1;
    VERIFY(! (m1 < m3).all() );
    VERIFY(! (m1 > m3).all() );
  }
  VERIFY(!(m1 > m2 && m1 < m2).any());
  VERIFY((m1 <= m2 || m1 >= m2).all());

  // comparisons array to scalar
  VERIFY( (m1 != (m1(r,c)+1) ).any() );
  VERIFY( (m1 >  (m1(r,c)-1) ).any() );
  VERIFY( (m1 <  (m1(r,c)+1) ).any() );
  VERIFY( (m1 ==  m1(r,c)    ).any() );

  // comparisons scalar to array
  VERIFY( ( (m1(r,c)+1) != m1).any() );
  VERIFY( ( (m1(r,c)-1) <  m1).any() );
  VERIFY( ( (m1(r,c)+1) >  m1).any() );
  VERIFY( (  m1(r,c)    == m1).any() );

  // test Select
  VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
  VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
  Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
  for (int j=0; j<cols; ++j)
  for (int i=0; i<rows; ++i)
    m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
                        .select(ArrayType::Zero(rows,cols),m1), m3);
  // shorter versions:
  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
                        .select(0,m1), m3);
  VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
                        .select(m1,0), m3);
  // even shorter version:
  VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);

  // count
  VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);

  // and/or
  VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
  VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
  RealScalar a = m1.abs().mean();
  VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());

  typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;

  // TODO allows colwise/rowwise for array
  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
}

template<typename ArrayType> void array_real(const ArrayType& m)
{
  using std::abs;
  using std::sqrt;
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  Index rows = m.rows();
  Index cols = m.cols();

  ArrayType m1 = ArrayType::Random(rows, cols),
            m2 = ArrayType::Random(rows, cols),
            m3(rows, cols),
            m4 = m1;

  m4 = (m4.abs()==Scalar(0)).select(1,m4);

  Scalar  s1 = internal::random<Scalar>();

  // these tests are mostly to check possible compilation issues with free-functions.
  VERIFY_IS_APPROX(m1.sin(), sin(m1));
  VERIFY_IS_APPROX(m1.cos(), cos(m1));
  VERIFY_IS_APPROX(m1.tan(), tan(m1));
  VERIFY_IS_APPROX(m1.asin(), asin(m1));
  VERIFY_IS_APPROX(m1.acos(), acos(m1));
  VERIFY_IS_APPROX(m1.atan(), atan(m1));
  VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
  VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
  VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
#ifdef EIGEN_HAS_C99_MATH
  VERIFY_IS_APPROX(m1.lgamma(), lgamma(m1));
  VERIFY_IS_APPROX(m1.digamma(), digamma(m1));
  VERIFY_IS_APPROX(m1.erf(), erf(m1));
  VERIFY_IS_APPROX(m1.erfc(), erfc(m1));
#endif  // EIGEN_HAS_C99_MATH
  VERIFY_IS_APPROX(m1.arg(), arg(m1));
  VERIFY_IS_APPROX(m1.round(), round(m1));
  VERIFY_IS_APPROX(m1.floor(), floor(m1));
  VERIFY_IS_APPROX(m1.ceil(), ceil(m1));
  VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
  VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
  VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
  VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
  VERIFY_IS_APPROX(m1.abs(), abs(m1));
  VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
  VERIFY_IS_APPROX(m1.square(), square(m1));
  VERIFY_IS_APPROX(m1.cube(), cube(m1));
  VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
  VERIFY_IS_APPROX(m1.sign(), sign(m1));


  // avoid NaNs with abs() so verification doesn't fail
  m3 = m1.abs();
  VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1)));
  VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1)));
  VERIFY_IS_APPROX(m3.log(), log(m3));
  VERIFY_IS_APPROX(m3.log10(), log10(m3));


  VERIFY((!(m1>m2) == (m1<=m2)).all());

  VERIFY_IS_APPROX(sin(m1.asin()), m1);
  VERIFY_IS_APPROX(cos(m1.acos()), m1);
  VERIFY_IS_APPROX(tan(m1.atan()), m1);
  VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
  VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
  VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
  VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0));
  VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
  VERIFY((Eigen::isnan)((m1*0.0)/0.0).all());
  VERIFY((Eigen::isinf)(m4/0.0).all());
  VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all());
  VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
  VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
  VERIFY_IS_APPROX(m3, sqrt(abs2(m1)));
  VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
  VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
  VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1);

  VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
  VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1));
  if(!NumTraits<Scalar>::IsComplex)
    VERIFY_IS_APPROX(numext::real(m1), m1);

  // shift argument of logarithm so that it is not zero
  Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
  VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber));

  VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
  VERIFY_IS_APPROX(m1.exp(), exp(m1));
  VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());

  VERIFY_IS_APPROX(m1.pow(2), m1.square());
  VERIFY_IS_APPROX(pow(m1,2), m1.square());
  VERIFY_IS_APPROX(m1.pow(3), m1.cube());
  VERIFY_IS_APPROX(pow(m1,3), m1.cube());
  VERIFY_IS_APPROX((-m1).pow(3), -m1.cube());
  VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube());

  ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
  VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
  VERIFY_IS_APPROX(m1.pow(exponents), m1.square());
  VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square());
  VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square());
  VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
  VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
  VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));

  VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
  VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());

  VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
  VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());

  VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));

  // scalar by array division
  const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
  s1 += Scalar(tiny);
  m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
  VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());

#ifdef EIGEN_HAS_C99_MATH
  // check special functions (comparing against numpy implementation)
  if (!NumTraits<Scalar>::IsComplex) {
    VERIFY_IS_APPROX(numext::digamma(Scalar(1)), RealScalar(-0.5772156649015329));
    VERIFY_IS_APPROX(numext::digamma(Scalar(1.5)), RealScalar(0.03648997397857645));
    VERIFY_IS_APPROX(numext::digamma(Scalar(4)), RealScalar(1.2561176684318));
    VERIFY_IS_APPROX(numext::digamma(Scalar(-10.5)), RealScalar(2.398239129535781));
    VERIFY_IS_APPROX(numext::digamma(Scalar(10000.5)), RealScalar(9.210340372392849));
    VERIFY_IS_EQUAL(numext::digamma(Scalar(0)),
                    std::numeric_limits<RealScalar>::infinity());
    VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
                    std::numeric_limits<RealScalar>::infinity());
    
    // Check the zeta function against scipy.special.zeta
    VERIFY_IS_APPROX(numext::zeta(Scalar(1.5), Scalar(2)), RealScalar(1.61237534869));
    VERIFY_IS_APPROX(numext::zeta(Scalar(4), Scalar(1.5)), RealScalar(0.234848505667));
    VERIFY_IS_APPROX(numext::zeta(Scalar(10.5), Scalar(3)), RealScalar(1.03086757337e-5));
    VERIFY_IS_APPROX(numext::zeta(Scalar(10000.5), Scalar(1.0001)), RealScalar(0.367879440865));
    VERIFY_IS_APPROX(numext::zeta(Scalar(3), Scalar(-2.5)), RealScalar(0.054102025820864097));
    VERIFY_IS_EQUAL(numext::zeta(Scalar(1), Scalar(1.2345)), // The second scalar does not matter
                    std::numeric_limits<RealScalar>::infinity());
    VERIFY((numext::isnan)(numext::zeta(Scalar(0.9), Scalar(1.2345)))); // The second scalar does not matter
    
    // Check the polygamma against scipy.special.polygamma examples
    VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(2)), RealScalar(0.644934066848));
    VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(3)), RealScalar(0.394934066848));
    VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(25.5)), RealScalar(0.0399946696496));
    VERIFY((numext::isnan)(numext::polygamma(Scalar(1.5), Scalar(1.2345)))); // The second scalar does not matter
    
    // Check the polygamma function over a larger range of values
    VERIFY_IS_APPROX(numext::polygamma(Scalar(17), Scalar(4.7)), RealScalar(293.334565435));
    VERIFY_IS_APPROX(numext::polygamma(Scalar(31), Scalar(11.8)), RealScalar(0.445487887616));
    VERIFY_IS_APPROX(numext::polygamma(Scalar(28), Scalar(17.7)), RealScalar(-2.47810300902e-07));
    VERIFY_IS_APPROX(numext::polygamma(Scalar(8), Scalar(30.2)), RealScalar(-8.29668781082e-09));
    /* The following tests only pass for doubles because floats cannot handle the large values of
       the gamma function.
    VERIFY_IS_APPROX(numext::polygamma(Scalar(42), Scalar(15.8)), RealScalar(-0.434562276666));
    VERIFY_IS_APPROX(numext::polygamma(Scalar(147), Scalar(54.1)), RealScalar(0.567742190178));
    VERIFY_IS_APPROX(numext::polygamma(Scalar(170), Scalar(64)), RealScalar(-0.0108615497927));
    */

    {
      // Test various propreties of igamma & igammac.  These are normalized
      // gamma integrals where
      //   igammac(a, x) = Gamma(a, x) / Gamma(a)
      //   igamma(a, x) = gamma(a, x) / Gamma(a)
      // where Gamma and gamma are considered the standard unnormalized
      // upper and lower incomplete gamma functions, respectively.
      ArrayType a = m1.abs() + 2;
      ArrayType x = m2.abs() + 2;
      ArrayType zero = ArrayType::Zero(rows, cols);
      ArrayType one = ArrayType::Constant(rows, cols, Scalar(1.0));
      ArrayType a_m1 = a - one;
      ArrayType Gamma_a_x = Eigen::igammac(a, x) * a.lgamma().exp();
      ArrayType Gamma_a_m1_x = Eigen::igammac(a_m1, x) * a_m1.lgamma().exp();
      ArrayType gamma_a_x = Eigen::igamma(a, x) * a.lgamma().exp();
      ArrayType gamma_a_m1_x = Eigen::igamma(a_m1, x) * a_m1.lgamma().exp();

      // Gamma(a, 0) == Gamma(a)
      VERIFY_IS_APPROX(Eigen::igammac(a, zero), one);

      // Gamma(a, x) + gamma(a, x) == Gamma(a)
      VERIFY_IS_APPROX(Gamma_a_x + gamma_a_x, a.lgamma().exp());

      // Gamma(a, x) == (a - 1) * Gamma(a-1, x) + x^(a-1) * exp(-x)
      VERIFY_IS_APPROX(Gamma_a_x, (a - 1) * Gamma_a_m1_x + x.pow(a-1) * (-x).exp());

      // gamma(a, x) == (a - 1) * gamma(a-1, x) - x^(a-1) * exp(-x)
      VERIFY_IS_APPROX(gamma_a_x, (a - 1) * gamma_a_m1_x - x.pow(a-1) * (-x).exp());
    }

    // Check exact values of igamma and igammac against a third party calculation.
    Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
    Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};

    // location i*6+j corresponds to a_s[i], x_s[j].
    Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
    Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
                            {0.0, 0.6321205588285578, 0.7768698398515702,
                             0.9816843611112658, 9.999500016666262e-05, 1.0},
                            {0.0, 0.4275932955291202, 0.608374823728911,
                             0.9539882943107686, 7.522076445089201e-07, 1.0},
                            {0.0, 0.01898815687615381, 0.06564245437845008,
                             0.5665298796332909, 4.166333347221828e-18, 1.0},
                            {0.0, 0.9999780593618628, 0.9999899967080838,
                             0.9999996219837988, 0.9991370418689945, 1.0},
                            {0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
    Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
                             {1.0, 0.36787944117144233, 0.22313016014842982,
                              0.018315638888734182, 0.9999000049998333, 0.0},
                             {1.0, 0.5724067044708798, 0.3916251762710878,
                              0.04601170568923136, 0.9999992477923555, 0.0},
                             {1.0, 0.9810118431238462, 0.9343575456215499,
                              0.4334701203667089, 1.0, 0.0},
                             {1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
                              3.7801620118431334e-07, 0.0008629581310054535,
                              0.0},
                             {1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
    for (int i = 0; i < 6; ++i) {
      for (int j = 0; j < 6; ++j) {
        if ((std::isnan)(igamma_s[i][j])) {
          VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j])));
        } else {
          VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
        }

        if ((std::isnan)(igammac_s[i][j])) {
          VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j])));
        } else {
          VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
        }
      }
    }
  }
#endif  // EIGEN_HAS_C99_MATH

  // check inplace transpose
  m3 = m1;
  m3.transposeInPlace();
  VERIFY_IS_APPROX(m3, m1.transpose());
  m3.transposeInPlace();
  VERIFY_IS_APPROX(m3, m1);
}

template<typename ArrayType> void array_complex(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  Index rows = m.rows();
  Index cols = m.cols();

  ArrayType m1 = ArrayType::Random(rows, cols),
            m2(rows, cols),
            m4 = m1;
  
  m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real());
  m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag());

  Array<RealScalar, -1, -1> m3(rows, cols);

  for (Index i = 0; i < m.rows(); ++i)
    for (Index j = 0; j < m.cols(); ++j)
      m2(i,j) = sqrt(m1(i,j));

  // these tests are mostly to check possible compilation issues with free-functions.
  VERIFY_IS_APPROX(m1.sin(), sin(m1));
  VERIFY_IS_APPROX(m1.cos(), cos(m1));
  VERIFY_IS_APPROX(m1.tan(), tan(m1));
  VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
  VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
  VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
  VERIFY_IS_APPROX(m1.arg(), arg(m1));
  VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
  VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
  VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
  VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
  VERIFY_IS_APPROX(m1.log(), log(m1));
  VERIFY_IS_APPROX(m1.log10(), log10(m1));
  VERIFY_IS_APPROX(m1.abs(), abs(m1));
  VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
  VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1));
  VERIFY_IS_APPROX(m1.square(), square(m1));
  VERIFY_IS_APPROX(m1.cube(), cube(m1));
  VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
  VERIFY_IS_APPROX(m1.sign(), sign(m1));


  VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
  VERIFY_IS_APPROX(m1.exp(), exp(m1));
  VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());

  VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
  VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
  VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));

  for (Index i = 0; i < m.rows(); ++i)
    for (Index j = 0; j < m.cols(); ++j)
      m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j)));
  VERIFY_IS_APPROX(arg(m1), m3);

  std::complex<RealScalar> zero(0.0,0.0);
  VERIFY((Eigen::isnan)(m1*zero/zero).all());
#if EIGEN_COMP_MSVC
  // msvc complex division is not robust
  VERIFY((Eigen::isinf)(m4/RealScalar(0)).all());
#else
#if EIGEN_COMP_CLANG
  // clang's complex division is notoriously broken too
  if((numext::isinf)(m4(0,0)/RealScalar(0))) {
#endif
    VERIFY((Eigen::isinf)(m4/zero).all());
#if EIGEN_COMP_CLANG
  }
  else
  {
    VERIFY((Eigen::isinf)(m4.real()/zero.real()).all());
  }
#endif
#endif // MSVC

  VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());

  VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
  VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
  VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1))));
  VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
  VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));

  VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
  VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1);

  // scalar by array division
  Scalar  s1 = internal::random<Scalar>();
  const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
  s1 += Scalar(tiny);
  m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
  VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());

  // check inplace transpose
  m2 = m1;
  m2.transposeInPlace();
  VERIFY_IS_APPROX(m2, m1.transpose());
  m2.transposeInPlace();
  VERIFY_IS_APPROX(m2, m1);

}

template<typename ArrayType> void min_max(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;

  Index rows = m.rows();
  Index cols = m.cols();

  ArrayType m1 = ArrayType::Random(rows, cols);

  // min/max with array
  Scalar maxM1 = m1.maxCoeff();
  Scalar minM1 = m1.minCoeff();

  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
  VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));

  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
  VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));

  // min/max with scalar input
  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
  VERIFY_IS_APPROX(m1, (m1.min)( maxM1));

  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
  VERIFY_IS_APPROX(m1, (m1.max)( minM1));

}

void test_array()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( array(Array22f()) );
    CALL_SUBTEST_3( array(Array44d()) );
    CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( comparisons(Array22f()) );
    CALL_SUBTEST_3( comparisons(Array44d()) );
    CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( min_max(Array22f()) );
    CALL_SUBTEST_3( min_max(Array44d()) );
    CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( array_real(Array22f()) );
    CALL_SUBTEST_3( array_real(Array44d()) );
    CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }

  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
  typedef CwiseUnaryOp<internal::scalar_multiple_op<double>, ArrayXd > Xpr;
  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
                           ArrayBase<Xpr>
                         >::value));
}