aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/array.cpp
blob: 662368c623d1e6ce21074236fb5d0dad3a59e72f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"

template<typename ArrayType> void array(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
  typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;

  Index rows = m.rows();
  Index cols = m.cols(); 

  ArrayType m1 = ArrayType::Random(rows, cols),
             m2 = ArrayType::Random(rows, cols),
             m3(rows, cols);

  ColVectorType cv1 = ColVectorType::Random(rows);
  RowVectorType rv1 = RowVectorType::Random(cols);

  Scalar  s1 = internal::random<Scalar>(),
          s2 = internal::random<Scalar>();          

  // scalar addition
  VERIFY_IS_APPROX(m1 + s1, s1 + m1);
  VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
  VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
  VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
  VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
  VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
  m3 = m1;
  m3 += s2;
  VERIFY_IS_APPROX(m3, m1 + s2);
  m3 = m1;
  m3 -= s1;
  VERIFY_IS_APPROX(m3, m1 - s1);  
  
  // scalar operators via Maps
  m3 = m1;
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
  VERIFY_IS_APPROX(m1, m3 - m2);
  
  m3 = m1;
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
  VERIFY_IS_APPROX(m1, m3 + m2);
  
  m3 = m1;
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
  VERIFY_IS_APPROX(m1, m3 * m2);
  
  m3 = m1;
  m2 = ArrayType::Random(rows,cols);
  m2 = (m2==0).select(1,m2);
  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());  
  VERIFY_IS_APPROX(m1, m3 / m2);

  // reductions
  VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
  VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
  if (!internal::isApprox(m1.sum(), (m1+m2).sum(), test_precision<Scalar>()))
      VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));

  // vector-wise ops
  m3 = m1;
  VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
  m3 = m1;
  VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
  m3 = m1;
  VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
  m3 = m1;
  VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
}

template<typename ArrayType> void comparisons(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> VectorType;

  Index rows = m.rows();
  Index cols = m.cols();

  Index r = internal::random<Index>(0, rows-1),
        c = internal::random<Index>(0, cols-1);

  ArrayType m1 = ArrayType::Random(rows, cols),
             m2 = ArrayType::Random(rows, cols),
             m3(rows, cols);            

  VERIFY(((m1 + Scalar(1)) > m1).all());
  VERIFY(((m1 - Scalar(1)) < m1).all());
  if (rows*cols>1)
  {
    m3 = m1;
    m3(r,c) += 1;
    VERIFY(! (m1 < m3).all() );
    VERIFY(! (m1 > m3).all() );
  }

  // comparisons to scalar
  VERIFY( (m1 != (m1(r,c)+1) ).any() );
  VERIFY( (m1 > (m1(r,c)-1) ).any() );
  VERIFY( (m1 < (m1(r,c)+1) ).any() );
  VERIFY( (m1 == m1(r,c) ).any() );

  // test Select
  VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
  VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
  Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
  for (int j=0; j<cols; ++j)
  for (int i=0; i<rows; ++i)
    m3(i,j) = internal::abs(m1(i,j))<mid ? 0 : m1(i,j);
  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
                        .select(ArrayType::Zero(rows,cols),m1), m3);
  // shorter versions:
  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
                        .select(0,m1), m3);
  VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
                        .select(m1,0), m3);
  // even shorter version:
  VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);

  // count
  VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);

  // and/or
  VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
  VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
  RealScalar a = m1.abs().mean();
  VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());

  typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;

  // TODO allows colwise/rowwise for array
  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
}

template<typename ArrayType> void array_real(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  Index rows = m.rows();
  Index cols = m.cols();

  ArrayType m1 = ArrayType::Random(rows, cols),
             m2 = ArrayType::Random(rows, cols),
             m3(rows, cols);

  // these tests are mostly to check possible compilation issues.
  VERIFY_IS_APPROX(m1.sin(), std::sin(m1));
  VERIFY_IS_APPROX(m1.sin(), internal::sin(m1));
  VERIFY_IS_APPROX(m1.cos(), std::cos(m1));
  VERIFY_IS_APPROX(m1.cos(), internal::cos(m1));
  VERIFY_IS_APPROX(m1.asin(), std::asin(m1));
  VERIFY_IS_APPROX(m1.asin(), internal::asin(m1));
  VERIFY_IS_APPROX(m1.acos(), std::acos(m1));
  VERIFY_IS_APPROX(m1.acos(), internal::acos(m1));
  VERIFY_IS_APPROX(m1.tan(), std::tan(m1));
  VERIFY_IS_APPROX(m1.tan(), internal::tan(m1));
  
  VERIFY_IS_APPROX(internal::cos(m1+RealScalar(3)*m2), internal::cos((m1+RealScalar(3)*m2).eval()));
  VERIFY_IS_APPROX(std::cos(m1+RealScalar(3)*m2), std::cos((m1+RealScalar(3)*m2).eval()));

  VERIFY_IS_APPROX(m1.abs().sqrt(), std::sqrt(std::abs(m1)));
  VERIFY_IS_APPROX(m1.abs().sqrt(), internal::sqrt(internal::abs(m1)));
  VERIFY_IS_APPROX(m1.abs(), internal::sqrt(internal::abs2(m1)));

  VERIFY_IS_APPROX(internal::abs2(internal::real(m1)) + internal::abs2(internal::imag(m1)), internal::abs2(m1));
  VERIFY_IS_APPROX(internal::abs2(std::real(m1)) + internal::abs2(std::imag(m1)), internal::abs2(m1));
  if(!NumTraits<Scalar>::IsComplex)
    VERIFY_IS_APPROX(internal::real(m1), m1);

  VERIFY_IS_APPROX(m1.abs().log(), std::log(std::abs(m1)));
  VERIFY_IS_APPROX(m1.abs().log(), internal::log(internal::abs(m1)));

  VERIFY_IS_APPROX(m1.exp(), std::exp(m1));
  VERIFY_IS_APPROX(m1.exp() * m2.exp(), std::exp(m1+m2));
  VERIFY_IS_APPROX(m1.exp(), internal::exp(m1));
  VERIFY_IS_APPROX(m1.exp() / m2.exp(), std::exp(m1-m2));

  VERIFY_IS_APPROX(m1.pow(2), m1.square());
  VERIFY_IS_APPROX(std::pow(m1,2), m1.square());
  m3 = m1.abs();
  VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
  VERIFY_IS_APPROX(std::pow(m3,RealScalar(0.5)), m3.sqrt());
}

template<typename ArrayType> void array_complex(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;

  Index rows = m.rows();
  Index cols = m.cols();

  ArrayType m1 = ArrayType::Random(rows, cols),
            m2(rows, cols);

  for (Index i = 0; i < m.rows(); ++i)
    for (Index j = 0; j < m.cols(); ++j)
      m2(i,j) = std::sqrt(m1(i,j));

  VERIFY_IS_APPROX(m1.sqrt(), m2);
  VERIFY_IS_APPROX(m1.sqrt(), std::sqrt(m1));
  VERIFY_IS_APPROX(m1.sqrt(), internal::sqrt(m1));
}

template<typename ArrayType> void min_max(const ArrayType& m)
{
  typedef typename ArrayType::Index Index;
  typedef typename ArrayType::Scalar Scalar;

  Index rows = m.rows();
  Index cols = m.cols();

  ArrayType m1 = ArrayType::Random(rows, cols);

  // min/max with array
  Scalar maxM1 = m1.maxCoeff();
  Scalar minM1 = m1.minCoeff();

  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
  VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));

  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
  VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));

  // min/max with scalar input
  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
  VERIFY_IS_APPROX(m1, (m1.min)( maxM1));

  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
  VERIFY_IS_APPROX(m1, (m1.max)( minM1));

}

void test_array()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( array(Array22f()) );
    CALL_SUBTEST_3( array(Array44d()) );
    CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( comparisons(Array22f()) );
    CALL_SUBTEST_3( comparisons(Array44d()) );
    CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( min_max(Array22f()) );
    CALL_SUBTEST_3( min_max(Array44d()) );
    CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
    CALL_SUBTEST_2( array_real(Array22f()) );
    CALL_SUBTEST_3( array_real(Array44d()) );
    CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }

  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
  typedef CwiseUnaryOp<internal::scalar_sum_op<double>, ArrayXd > Xpr;
  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
                           ArrayBase<Xpr>
                         >::value));
}