1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#include "main.h"
namespace Eigen {
template<typename MatrixType> void adjoint(const MatrixType& m)
{
/* this test covers the following files:
Transpose.h Conjugate.h Dot.h
*/
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
MatrixType m1 = MatrixType::random(rows, cols),
m2 = MatrixType::random(rows, cols),
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::identity(rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),
v2 = VectorType::random(rows),
v3 = VectorType::random(rows),
vzero = VectorType::zero(rows);
Scalar s1 = random<Scalar>(),
s2 = random<Scalar>();
// check involutivity of adjoint, transpose, conjugate
VERIFY_IS_APPROX(m1.transpose().transpose(), m1);
VERIFY_IS_APPROX(m1.conjugate().conjugate(), m1);
VERIFY_IS_APPROX(m1.adjoint().adjoint(), m1);
// check basic compatibility of adjoint, transpose, conjugate
VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
if(!NumTraits<Scalar>::IsComplex)
VERIFY_IS_APPROX(m1.adjoint().transpose(), m1);
// check multiplicative behavior
VERIFY_IS_APPROX((m1.transpose() * m2).transpose(), m2.transpose() * m1);
VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
VERIFY_IS_APPROX((m1.transpose() * m2).conjugate(), m1.adjoint() * m2.conjugate());
VERIFY_IS_APPROX((s1 * m1).transpose(), s1 * m1.transpose());
VERIFY_IS_APPROX((s1 * m1).conjugate(), conj(s1) * m1.conjugate());
VERIFY_IS_APPROX((s1 * m1).adjoint(), conj(s1) * m1.adjoint());
// check basic properties of dot, norm, norm2
typedef typename NumTraits<Scalar>::Real RealScalar;
VERIFY_IS_APPROX((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3));
VERIFY_IS_APPROX(v3.dot(s1 * v1 + s2 * v2), conj(s1)*v3.dot(v1)+conj(s2)*v3.dot(v2));
VERIFY_IS_APPROX(conj(v1.dot(v2)), v2.dot(v1));
VERIFY_IS_APPROX(abs(v1.dot(v1)), v1.norm2());
if(NumTraits<Scalar>::HasFloatingPoint)
VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm());
VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
if(NumTraits<Scalar>::HasFloatingPoint)
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
// check compatibility of dot and adjoint
VERIFY_IS_APPROX(v1.dot(square * v2), (square.adjoint() * v1).dot(v2));
// like in testBasicStuff, test operator() to check const-qualification
int r = random<int>(0, rows-1),
c = random<int>(0, cols-1);
VERIFY_IS_APPROX(m1.conjugate()(r,c), conj(m1(r,c)));
VERIFY_IS_APPROX(m1.adjoint()(c,r), conj(m1(r,c)));
}
void EigenTest::testAdjoint()
{
for(int i = 0; i < m_repeat; i++) {
adjoint(Matrix<float, 1, 1>());
adjoint(Matrix4d());
adjoint(MatrixXcf(3, 3));
adjoint(MatrixXi(8, 12));
adjoint(MatrixXcd(20, 20));
}
}
} // namespace Eigen
|