aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/adjoint.cpp
blob: b6cf0a68baa67de3c77065fd2c3d1a81f7ac0585 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_NO_STATIC_ASSERT

#include "main.h"

template<typename MatrixType> void adjoint(const MatrixType& m)
{
  /* this test covers the following files:
     Transpose.h Conjugate.h Dot.h
  */
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  
  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols),
             square = SquareMatrixType::Random(rows, rows);
  VectorType v1 = VectorType::Random(rows),
             v2 = VectorType::Random(rows),
             v3 = VectorType::Random(rows),
             vzero = VectorType::Zero(rows);

  Scalar s1 = internal::random<Scalar>(),
         s2 = internal::random<Scalar>();

  // check basic compatibility of adjoint, transpose, conjugate
  VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
  VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);

  // check multiplicative behavior
  VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
  VERIFY_IS_APPROX((s1 * m1).adjoint(),                     internal::conj(s1) * m1.adjoint());

  // check basic properties of dot, norm, norm2
  typedef typename NumTraits<Scalar>::Real RealScalar;
  
  RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
  VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     internal::conj(s1) * v1.dot(v3) + internal::conj(s2) * v2.dot(v3), ref));
  VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref));
  VERIFY_IS_APPROX(internal::conj(v1.dot(v2)),               v2.dot(v1));
  VERIFY_IS_APPROX(internal::real(v1.dot(v1)),                v1.squaredNorm());
  if(!NumTraits<Scalar>::IsInteger) {
    VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm());
    // check normalized() and normalize()
    VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
    v3 = v1;
    v3.normalize();
    VERIFY_IS_APPROX(v1, v1.norm() * v3);
    VERIFY_IS_APPROX(v3, v1.normalized());
    VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
  }
  VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(vzero.dot(v1)),  static_cast<RealScalar>(1));
  
  // check compatibility of dot and adjoint
  
  ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
  VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), ref));

  // like in testBasicStuff, test operator() to check const-qualification
  Index r = internal::random<Index>(0, rows-1),
      c = internal::random<Index>(0, cols-1);
  VERIFY_IS_APPROX(m1.conjugate()(r,c), internal::conj(m1(r,c)));
  VERIFY_IS_APPROX(m1.adjoint()(c,r), internal::conj(m1(r,c)));

  if(!NumTraits<Scalar>::IsInteger)
  {
    // check that Random().normalized() works: tricky as the random xpr must be evaluated by
    // normalized() in order to produce a consistent result.
    VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1));
  }

  // check inplace transpose
  m3 = m1;
  m3.transposeInPlace();
  VERIFY_IS_APPROX(m3,m1.transpose());
  m3.transposeInPlace();
  VERIFY_IS_APPROX(m3,m1);

  // check inplace adjoint
  m3 = m1;
  m3.adjointInPlace();
  VERIFY_IS_APPROX(m3,m1.adjoint());
  m3.transposeInPlace();
  VERIFY_IS_APPROX(m3,m1.conjugate());

  // check mixed dot product
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  RealVectorType rv1 = RealVectorType::Random(rows);
  VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
  VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
}

void test_adjoint()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( adjoint(Matrix3d()) );
    CALL_SUBTEST_3( adjoint(Matrix4f()) );
    CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  }
  // test a large static matrix only once
  CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );

#ifdef EIGEN_TEST_PART_4
  {
    MatrixXcf a(10,10), b(10,10);
    VERIFY_RAISES_ASSERT(a = a.transpose());
    VERIFY_RAISES_ASSERT(a = a.transpose() + b);
    VERIFY_RAISES_ASSERT(a = b + a.transpose());
    VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
    VERIFY_RAISES_ASSERT(a = a.adjoint());
    VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
    VERIFY_RAISES_ASSERT(a = b + a.adjoint());

    // no assertion should be triggered for these cases:
    a.transpose() = a.transpose();
    a.transpose() += a.transpose();
    a.transpose() += a.transpose() + b;
    a.transpose() = a.adjoint();
    a.transpose() += a.adjoint();
    a.transpose() += a.adjoint() + b;
  }
#endif
}