aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/Core/Numeric.h
blob: 264c7a54995b85b7ad34f386f7d575268e2cac69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

// This file is part of gen, a lightweight C++ template library
// for linear algebra. gen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// gen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// gen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with gen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.

#ifndef EI_NUMERIC_H
#define EI_NUMERIC_H

template<typename T> struct NumTraits;

template<> struct NumTraits<int>
{
  typedef int Real;
  typedef double FloatingPoint;
  typedef double RealFloatingPoint;
  
  static const bool IsComplex = false;
  static const bool HasFloatingPoint = false;
  
  static int epsilon() { return 0; }
  static int real(const int& x) { return x; }
  static int imag(const int& x) { EI_UNUSED(x); return 0; }
  static int conj(const int& x) { return x; }
  static double sqrt(const int& x) { return std::sqrt(static_cast<double>(x)); }
  static int abs(const int& x) { return std::abs(x); }
  static int abs2(const int& x) { return x*x; }
  static int rand()
  {
    // "rand()%21" would be bad. always use the high-order bits, not the low-order bits.
    // note: here (gcc 4.1) static_cast<int> seems to round the nearest int.
    // I don't know if that's part of the standard.
    return -10 + static_cast<int>(std::rand() / ((RAND_MAX + 1.0)/20.0));
  }
};

template<> struct NumTraits<float>
{
  typedef float Real;
  typedef float FloatingPoint;
  typedef float RealFloatingPoint;
  
  static const bool IsComplex = false;
  static const bool HasFloatingPoint = true;
  
  static float epsilon() { return 1e-5f; }
  static float real(const float& x) { return x; }
  static float imag(const float& x) { EI_UNUSED(x); return 0; }
  static float conj(const float& x) { return x; }
  static float sqrt(const float& x) { return std::sqrt(x); }
  static float abs(const float& x) { return std::abs(x); }
  static float abs2(const float& x) { return x*x; }
  static float rand()
  {
    return std::rand() / (RAND_MAX/20.0f) - 10.0f;
  }
};

template<> struct NumTraits<double>
{
  typedef double Real;
  typedef double FloatingPoint;
  typedef double RealFloatingPoint;
  
  static const bool IsComplex = false;
  static const bool HasFloatingPoint = true;
  
  static double epsilon() { return 1e-11; }
  static double real(const double& x) { return x; }
  static double imag(const double& x) { EI_UNUSED(x); return 0; }
  static double conj(const double& x) { return x; }
  static double sqrt(const double& x) { return std::sqrt(x); }
  static double abs(const double& x) { return std::abs(x); }
  static double abs2(const double& x) { return x*x; }
  static double rand()
  {
    return std::rand() / (RAND_MAX/20.0) - 10.0;
  }
};

template<typename _Real> struct NumTraits<std::complex<_Real> >
{
  typedef _Real Real;
  typedef std::complex<Real> Complex;
  typedef std::complex<double> FloatingPoint;
  typedef typename NumTraits<Real>::FloatingPoint RealFloatingPoint;
  
  static const bool IsComplex = true;
  static const bool HasFloatingPoint = NumTraits<Real>::HasFloatingPoint;
  
  static Real epsilon() { return NumTraits<Real>::epsilon(); }
  static Real real(const Complex& x) { return std::real(x); }
  static Real imag(const Complex& x) { return std::imag(x); }
  static Complex conj(const Complex& x) { return std::conj(x); }
  static FloatingPoint sqrt(const Complex& x)
  { return std::sqrt(static_cast<FloatingPoint>(x)); }
  static RealFloatingPoint abs(const Complex& x)
  { return std::abs(static_cast<FloatingPoint>(x)); }
  static Real abs2(const Complex& x)
  { return std::real(x) * std::real(x) + std::imag(x) * std::imag(x); }
  static Complex rand()
  {
    return Complex(NumTraits<Real>::rand(), NumTraits<Real>::rand());
  }
};

template<typename T> typename NumTraits<T>::Real Real(const T& x)
{ return NumTraits<T>::real(x); }

template<typename T> typename NumTraits<T>::Real Imag(const T& x)
{ return NumTraits<T>::imag(x); }

template<typename T> T Conj(const T& x)
{ return NumTraits<T>::conj(x); }

template<typename T> typename NumTraits<T>::FloatingPoint Sqrt(const T& x)
{ return NumTraits<T>::sqrt(x); }

template<typename T> typename NumTraits<T>::RealFloatingPoint Abs(const T& x)
{ return NumTraits<T>::abs(x); }

template<typename T> typename NumTraits<T>::Real Abs2(const T& x)
{ return NumTraits<T>::abs2(x); }

template<typename T> T Rand()
{ return NumTraits<T>::rand(); }

template<typename T> bool Negligible(const T& a, const T& b)
{
  return(Abs(a) <= Abs(b) * NumTraits<T>::epsilon());
}

template<typename T> bool Approx(const T& a, const T& b)
{
  if(NumTraits<T>::IsFloat)
    return(Abs(a - b) <= std::min(Abs(a), Abs(b)) * NumTraits<T>::epsilon());
  else
    return(a == b);
}

template<typename T> bool LessThanOrApprox(const T& a, const T& b)
{
  if(NumTraits<T>::IsFloat)
    return(a < b || Approx(a, b));
  else
    return(a <= b);
}

#endif // EI_NUMERIC_H