aboutsummaryrefslogtreecommitdiffhomepage
path: root/lapack/clarf.f
blob: ca0328fb58ef538011d14a3fd88b998afa1df4e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
*> \brief \b CLARF
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CLARF + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarf.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarf.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarf.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
* 
*       .. Scalar Arguments ..
*       CHARACTER          SIDE
*       INTEGER            INCV, LDC, M, N
*       COMPLEX            TAU
*       ..
*       .. Array Arguments ..
*       COMPLEX            C( LDC, * ), V( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLARF applies a complex elementary reflector H to a complex M-by-N
*> matrix C, from either the left or the right. H is represented in the
*> form
*>
*>       H = I - tau * v * v**H
*>
*> where tau is a complex scalar and v is a complex vector.
*>
*> If tau = 0, then H is taken to be the unit matrix.
*>
*> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
*> tau.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': form  H * C
*>          = 'R': form  C * H
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*>          V is COMPLEX array, dimension
*>                     (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*>                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*>          The vector v in the representation of H. V is not used if
*>          TAU = 0.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*>          INCV is INTEGER
*>          The increment between elements of v. INCV <> 0.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX
*>          The value tau in the representation of H.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX array, dimension (LDC,N)
*>          On entry, the M-by-N matrix C.
*>          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*>          or C * H if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension
*>                         (N) if SIDE = 'L'
*>                      or (M) if SIDE = 'R'
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            INCV, LDC, M, N
      COMPLEX            TAU
*     ..
*     .. Array Arguments ..
      COMPLEX            C( LDC, * ), V( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            APPLYLEFT
      INTEGER            I, LASTV, LASTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CGERC
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILACLR, ILACLC
      EXTERNAL           LSAME, ILACLR, ILACLC
*     ..
*     .. Executable Statements ..
*
      APPLYLEFT = LSAME( SIDE, 'L' )
      LASTV = 0
      LASTC = 0
      IF( TAU.NE.ZERO ) THEN
!     Set up variables for scanning V.  LASTV begins pointing to the end
!     of V.
         IF( APPLYLEFT ) THEN
            LASTV = M
         ELSE
            LASTV = N
         END IF
         IF( INCV.GT.0 ) THEN
            I = 1 + (LASTV-1) * INCV
         ELSE
            I = 1
         END IF
!     Look for the last non-zero row in V.
         DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO )
            LASTV = LASTV - 1
            I = I - INCV
         END DO
         IF( APPLYLEFT ) THEN
!     Scan for the last non-zero column in C(1:lastv,:).
            LASTC = ILACLC(LASTV, N, C, LDC)
         ELSE
!     Scan for the last non-zero row in C(:,1:lastv).
            LASTC = ILACLR(M, LASTV, C, LDC)
         END IF
      END IF
!     Note that lastc.eq.0 renders the BLAS operations null; no special
!     case is needed at this level.
      IF( APPLYLEFT ) THEN
*
*        Form  H * C
*
         IF( LASTV.GT.0 ) THEN
*
*           w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1)
*
            CALL CGEMV( 'Conjugate transpose', LASTV, LASTC, ONE,
     $           C, LDC, V, INCV, ZERO, WORK, 1 )
*
*           C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H
*
            CALL CGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC )
         END IF
      ELSE
*
*        Form  C * H
*
         IF( LASTV.GT.0 ) THEN
*
*           w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
*
            CALL CGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC,
     $           V, INCV, ZERO, WORK, 1 )
*
*           C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H
*
            CALL CGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC )
         END IF
      END IF
      RETURN
*
*     End of CLARF
*
      END