1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
namespace Eigen {
/** \page SparseQuickRefPage Quick reference guide for sparse matrices
\b Table \b of \b contents
- \ref Constructors
- \ref SparseMatrixInsertion
- \ref SparseBasicInfos
- \ref SparseBasicOps
- \ref SparseInterops
- \ref sparsepermutation
- \ref sparsesubmatrices
- \ref sparseselfadjointview
\n
<hr>
In this page, we give a quick summary of the main operations available for sparse matrices in the class SparseMatrix. First, it is recommended to read first the introductory tutorial at \ref TutorialSparse. The important point to have in mind when working on sparse matrices is how they are stored :
i.e either row major or column major. The default is column major. Most arithmetic operations on sparse matrices will assert that they have the same storage order. Moreover, when interacting with external libraries that are not yet supported by Eigen, it is important to know how to send the required matrix pointers.
\section Constructors Constructors and assignments
SparseMatrix is the core class to build and manipulate sparse matrices in Eigen. It takes as template parameters the Scalar type and the storage order, either RowMajor or ColumnMajor. The default is ColumnMajor.
\code
SparseMatrix<double> sm1(1000,1000); // 1000x1000 compressed sparse matrix of double.
SparseMatrix<std::complex<double>,RowMajor> sm2; // Compressed row major matrix of complex double.
\endcode
The copy constructor and assignment can be used to convert matrices from a storage order to another
\code
SparseMatrix<double,Colmajor> sm1;
// Eventually fill the matrix sm1 ...
SparseMatrix<double,Rowmajor> sm2(sm1), sm3; // Initialize sm2 with sm1.
sm3 = sm1; // Assignment and evaluations modify the storage order.
\endcode
\section SparseMatrixInsertion Allocating and inserting values
resize() and reserve() are used to set the size and allocate space for nonzero elements
\code
sm1.resize(m,n); //Change sm to a mxn matrix.
sm1.reserve(nnz); // Allocate room for nnz nonzeros elements.
\endcode
Note that when calling reserve(), it is not required that nnz is the exact number of nonzero elements in the final matrix. However, an exact estimation will avoid multiple reallocations during the insertion phase.
Insertions of values in the sparse matrix can be done directly by looping over nonzero elements and use the insert() function
\code
// Direct insertion of the value v_ij;
sm1.insert(i, j) = v_ij; // It is assumed that v_ij does not already exist in the matrix.
\endcode
After insertion, a value at (i,j) can be modified using coeffRef()
\code
// Update the value v_ij
sm1.coeffRef(i,j) = v_ij;
sm1.coeffRef(i,j) += v_ij;
sm1.coeffRef(i,j) -= v_ij;
...
\endcode
The recommended way to insert values is to build a list of triplets (row, col, val) and then call setFromTriplets().
\code
sm1.setFromTriplets(TripletList.begin(), TripletList.end());
\endcode
A complete example is available at \ref TutorialSparseFilling.
The following functions can be used to set constant or random values in the matrix.
\code
sm1.setZero(); // Reset the matrix with zero elements
...
\endcode
\section SparseBasicInfos Matrix properties
Beyond the functions rows() and cols() that are used to get the number of rows and columns, there are some useful functions that are available to easily get some informations from the matrix.
<table class="manual">
<tr>
<td> \code
sm1.rows(); // Number of rows
sm1.cols(); // Number of columns
sm1.nonZeros(); // Number of non zero values
sm1.outerSize(); // Number of columns (resp. rows) for a column major (resp. row major )
sm1.innerSize(); // Number of rows (resp. columns) for a row major (resp. column major)
sm1.norm(); // (Euclidian ??) norm of the matrix
sm1.squaredNorm(); //
sm1.isVector(); // Check if sm1 is a sparse vector or a sparse matrix
...
\endcode </td>
</tr>
</table>
\section SparseBasicOps Arithmetic operations
It is easy to perform arithmetic operations on sparse matrices provided that the dimensions are adequate and that the matrices have the same storage order. Note that the evaluation can always be done in a matrix with a different storage order.
<table class="manual">
<tr><th> Operations </th> <th> Code </th> <th> Notes </th></tr>
<tr>
<td> add subtract </td>
<td> \code
sm3 = sm1 + sm2;
sm3 = sm1 - sm2;
sm2 += sm1;
sm2 -= sm1; \endcode
</td>
<td>
sm1 and sm2 should have the same storage order
</td>
</tr>
<tr class="alt"><td>
scalar product</td><td>\code
sm3 = sm1 * s1; sm3 *= s1;
sm3 = s1 * sm1 + s2 * sm2; sm3 /= s1;\endcode
</td>
<td>
Many combinations are possible if the dimensions and the storage order agree.
</tr>
<tr>
<td> Product </td>
<td> \code
sm3 = sm1 * sm2;
dm2 = sm1 * dm1;
dv2 = sm1 * dv1;
\endcode </td>
<td>
</td>
</tr>
<tr class='alt'>
<td> transposition, adjoint</td>
<td> \code
sm2 = sm1.transpose();
sm2 = sm1.adjoint();
\endcode </td>
<td>
Note that the transposition change the storage order. There is no support for transposeInPlace().
</td>
</tr>
<tr>
<td>
Component-wise ops
</td>
<td>\code
sm1.cwiseProduct(sm2);
sm1.cwiseQuotient(sm2);
sm1.cwiseMin(sm2);
sm1.cwiseMax(sm2);
sm1.cwiseAbs();
sm1.cwiseSqrt();
\endcode</td>
<td>
sm1 and sm2 should have the same storage order
</td>
</tr>
</table>
\section SparseInterops Low-level storage
There are a set of low-levels functions to get the standard compressed storage pointers. The matrix should be in compressed mode which can be checked by calling isCompressed(); makeCompressed() should do the job otherwise.
\code
// Scalar pointer to the values of the matrix, size nnz
sm1.valuePtr();
// Index pointer to get the row indices (resp. column indices) for column major (resp. row major) matrix, size nnz
sm1.innerIndexPtr();
// Index pointer to the beginning of each row (resp. column) in valuePtr() and innerIndexPtr() for column major (row major). The size is outersize()+1;
sm1.outerIndexPtr();
\endcode
These pointers can therefore be easily used to send the matrix to some external libraries/solvers that are not yet supported by Eigen.
\section sparsepermutation Permutations, submatrices and Selfadjoint Views
In many cases, it is necessary to reorder the rows and/or the columns of the sparse matrix for several purposes : fill-in reducing during matrix decomposition, better data locality for sparse matrix-vector products... The class PermutationMatrix is available to this end.
\code
PermutationMatrix<Dynamic, Dynamic, int> perm;
// Reserve and fill the values of perm;
perm.inverse(n); // Compute eventually the inverse permutation
sm1.twistedBy(perm) //Apply the permutation on rows and columns
sm2 = sm1 * perm; // ??? Apply the permutation on columns ???;
sm2 = perm * sm1; // ??? Apply the permutation on rows ???;
\endcode
\section sparsesubmatrices Sub-matrices
The following functions are useful to extract a block of rows (resp. columns) from a row-major (resp. column major) sparse matrix. Note that because of the particular storage, it is not ?? efficient ?? to extract a submatrix comprising a certain number of subrows and subcolumns.
\code
sm1.innerVector(outer); // Returns the outer -th column (resp. row) of the matrix if sm is col-major (resp. row-major)
sm1.innerVectors(outer); // Returns the outer -th column (resp. row) of the matrix if mat is col-major (resp. row-major)
sm1.middleRows(start, numRows); // For row major matrices, get a range of numRows rows
sm1.middleCols(start, numCols); // For column major matrices, get a range of numCols cols
\endcode
Examples :
\section sparseselfadjointview Sparse triangular and selfadjoint Views
\code
sm2 = sm1.triangularview<Lower>(); // Get the lower triangular part of the matrix.
dv2 = sm1.triangularView<Upper>().solve(dv1); // Solve the linear system with the uppper triangular part.
sm2 = sm1.selfadjointview<Lower>(); // Build a selfadjoint matrix from the lower part of sm1.
\endcode
*/
}
|